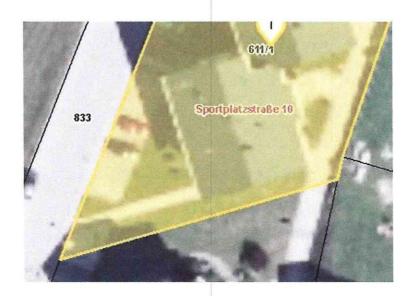
Bauwerk Consult Oppenauer GmbH Artmüller Energieberatung GmbH Steinfeldstraße 13 3304 St. Georgen am Ybbsfelde 0676 619 23 59


helmut@artmueller.org; helmut.artmueller@aon.at

ENERGIEAUSWEIS

Ist-Zustand

Bestand Tempelmayr, Strengberg, Sportplatzstraße

Sportplatzstraße 10, Tür 1 3314 Strengberg

Energieausweis für Wohngebäude

OIB ÖSTERREICHISCHES OIB-RICHTIINIE 6
INSTITUT FÜR BAUTECHNIK Ausgabe: April 2019

BEZEICHNUNG Bestand Tempelmayr, Strengberg, Sportplatzstraße

Gebäude(-teil) EG Wohnung 1

Nutzungsprofil Wohngebäude mit zehn und mehr Nutzungseinheiten

Straße Sportplatzstraße 10, Tür 1

PLZ/Ort 3314 Strengberg

Grundstücksnr. 611/1 Umsetzungsstand Ist-Zustand

Baujahr 1972

Letzte Veränderung

Katastralgemeinde Strengberg

PEB SK

KG-Nr.

3133

Seehöhe

359 m

SPEZIFISCHER REFERENZ-HEIZWÄRMEBEDARF, PRIMÄRENERGIEBEDARF, KOHLENDIOXIDEMISSIONEN und GESAMTENERGIEEFFIZIENZ-FAKTOR jeweils unter STANDORTKLIMA-(SK)-Bedingungen

HWB_{Ref}: Der Referenz-Heizwärmebedarf ist jene Wärmenenge, die in den Räumen bereitgestellt werden muss, um diese auf einer normativ geforderten Raumtemperatur, ohne Berücksichtigung allfälliger Erträge aus Wärmerückgewinnung, zu halten.

WWWB: Der Warmwasserwärmebedarf ist in Abhängigkeit der Gebäudekategorie als flächenbezogener Defaultwert festgelegt.

HEB: Beim Heizenergiebedarf werden zusätzlich zum Heiz- und Warmwasser-wärmebedarf die Verluste des gebäudetechnischen Systems berücksichtigt, dazu zählen insbesondere die Verluste der Wärmebereitstellung, der Wärmeverteilung, der Wärmespeicherung und der Wärmeabgabe sowie allfälliger Hilfsenergie.

HHSB: Der Haushaltsstrombedarf ist als flächenbezogener Defaultwert festgelegt. Er entspricht in etwa dem durchschnittlichen flächenbezogenen Stromverbrauch eines österreichischen Haushalts.

RK: Das Referenzklima ist ein virtuelles Klima. Es dient zur Ermittlung von Energiekennzahlen.

HWB Ref.SK

CO 2eq,SK

f GEE,SK

EEB: Der Endenergiebedarf umfasst zusätzlich zum Heizenergiebedarf den Haushaltsstrombedarf, abzüglich allfälliger Endenergieerträge und zuzüglich eines dafür notwendigen Hilfsenergiebedarfs. Der Endenergiebedarf entspricht jener Energiemenge, die eingekauft werden muss (Lieferenergiebedarf).

fgee Der Gesamtenergieeffizienz-Faktor ist der Quotient aus einerseits dem Endenergiebedarf abzüglich allfälliger Endenergieerträge und zuzüglich des dafür notwendigen Hilfsenergiebedarfs und andererseits einem Referenz-Endenergiebedarf (Anforderung 2007).

PEB: Der Primärenergiebedarf ist der Endenergiebedarf einschließlich der Verluste in allen Vorketten. Der Primärenergiebedarf weist einen erneuerbaren (PEB ern.) und einen nicht erneuerbaren (PEB n.em.) Anteil auf.

CO₂eq: Gesamte dem Endenergiebedarf zuzurechnenden äquivalenten Kohlendioxidemissionen (Treibhausgase), einschließlich jener für Vorketten

SK: Das Standortklima ist das reale Klima am Gebäudestandort. Dieses Klimamodell wurde auf Basis der Primärdaten (1970 bis 1999) der Zentralanstalt für Meteorologie und Geodynamik für die Jahre 1978 bis 2007 gegenüber der Vorfassung aktualisiert.

Alle Werte gelten unter der Annahme eines normierten BenutzerInnenverhaltens. Sie geben den Jahresbedarf pro Quadratmeter beheizter Brutto-Grundfläche an.

Dieser Energieausweis entspricht den Vorgaben der OIB-Richtlinie 6 "Energieeinsparung und Wärmeschutz" des Österreichischen Instituts für Bautechnik in Umsetzung der Richtlinie 2010/31/EU vom 19. Mai 2010 über die Gesamtenergieeffizienz von Gebäuden bzw. 2018/844/EU vom 30. Mai 2018 und des Energieausweis-Vorlage-Gesetzes (EAVG). Der Ermittlungszeitraum für die Konversionsfaktoren für Primärenergie und Kohlendioxidemissionen ist für Strom: 2013-09 – 2018-08, und es wurden übliche Allokationsregeln unterstellt.

Energieausweis für Wohngebäude

GEBÄUDEKENNDATEN	EA-Art:
------------------	---------

Brutto-Grundfläche (BGF)	82,8 m²	Heiztage	365 d	Art der Lüftung	Fensterlüftung
Bezugsfläche (BF)	66,3 m ²	Heizgradtage	3 841 Kd	Solarthermie	- m²
Brutto-Volumen (V _B)	268,8 m³	Klimaregion	N	Photovoltaik	- kWp
Gebäude-Hüllfläche (A)	184,3 m²	Norm-Außentemperatur	-13,9 °C	Stromspeicher	::::::::::::::::::::::::::::::::::::::
Kompaktheit (A/V)	0,69 1/m	Soll-Innentemperatur	22,0 °C	WW-WB-System (primär)	
charakteristische Länge (Ic)	1,46 m	mittlerer U-Wert	0,95 W/m2K	WW-WB-System (sekundä	ir, opt.)
Teil-BGF	- m²	LEK _T -Wert	82,05	RH-WB-System (primär)	NOTE OF
Teil-BF	- m²	Bauweise	schwer	RH-WB-System (sekundär	, opt.)
Teil-V _B	- m³			5 · · · · ·	와 (함 · 회

WÄRME- UND ENERGIEBEDARF (Referenzklima)

Ergebnisse

Referenz-Heizwärmebedarf HWB Ref, RK = 182,5 kWh/m²a Heizwärmebedarf $HWB_{RK} = 182,5 \text{ kWh/m}^2\text{a}$ Endenergiebedarf $EEB_{RK} = 221,3 \text{ kWh/m}^2\text{a}$ Gesamtenergieeffizienz-Faktor fgee.rk = 3,67

WÄRME- UND ENERGIEBEDARF (Standortklima)

Referenz-Heizwärmebedarf	Q _{h,Ref,SK} =	18 295	kWh/a	HWB _{Ref.SK} =	220,8	kWh/m²a
Heizwärmebedarf	Qh,sk =	18 295	kWh/a	HWB sk =	220.8	kWh/m²a
Warmwasserwärmebedarf	$Q_{tw} =$	847	kWh/a	WWWB =		
Heizenergiebedarf	Q HEB,SK =	19 484	kWh/a	HEB _{SK} =	235.2	kWh/m²a
Energieaufwandszahl Warmwasser				e awz.ww =	1950	
Energieaufwandszahl Raumheizung				eawz,RH =	0.92	
Energieaufwandszahl Heizen				e _{AWZ.H} =	70	
Haushaltsstrombedarf	Q _{HHSB} =	1 887	kWh/a	2,000,000,000	1550,43%	kWh/m²a
Endenergiebedarf	Q _{EEB,SK} =	21 371	kWh/a	EEB _{SK} =	-01017	
Primärenergiebedarf	Q _{PEB,SK} =	34 835	kWh/a	PEB _{SK} =		
Primärenergiebedarf nicht erneuerbar	Q PEBn.em.,SK =	21 798	kWh/a	PEB _{n.em.SK} =	2011/2011 P1770	TANKS AND THE TANKS
Primärenergiebedarf erneuerbar	Q PEBern.,SK =	13 036	kWh/a	PEB _{em.,SK} =	0.5	
äquivalente Kohlendioxidemissionen	Q _{CO2eq,SK} =	4 851	kg/a	CO _{2eq,SK} =	WARREST 01	kg/m²a
Gesamtenergieeffizienz-Faktor				f _{GEE.SK} =		-
Photovoltaik-Export	Q _{PVE,SK} =	: 	kWh/a	PVE EXPORT,SK =	- 57	kWh/m²a

ERSTELLT

GWR-Zahl ErstellerIn Ausstellungsdatum 07.03.2025

Bauwerk Consult Oppenauer GmbH Steinfeldstraße 13, 3304 St. Georgen am Ybbsfelde

Gültigkeitsdatum

06.03.2035

Unterschrift

BAUWERK CONSULT

Geschäftszahl

Die Energiekennzahlen dieses Energieausweises dienen ausschließlich der Information. Aufgrund der idealisierten Eingangsparameter können bei tatsächlicher Nutzung erhebliche Abweichungen auftreten. Insbesondere Nutzungseinheiten unterschiedlicher Lage können aus Gründen der Geometrie und der Lage hinsichtlich ihrer Energiekennzahlen von den hier angegebenen abweichen.

Datenblatt GEQ

Bestand Tempelmayr, Strengberg, Sportplatzstraße

Anzeige in Druckwerken und elektronischen Medien

HWB_{Ref,SK} 221 f_{GEE,SK} 3,82

Gebäudedaten

Brutto-Grundfläche BGF

83 m²

charakteristische Länge I_c 1,46 m

Konditioniertes Brutto-Volumen

269 m³

Kompaktheit A_B / V_B

Gebäudehüllfläche AR

184 m²

Ermittlung der Eingabedaten

Geometrische Daten:

vor Ort erhoben, März 2025, Plannr. ---

Bauphysikalische Daten: vor Ort erhoben, März 2025

Haustechnik Daten:

vor Ort erhoben, März 2025

Haustechniksystem

Raumheizung:

Stromheizung direkt (Strom)

Warmwasser

Stromheizung direkt (Strom)

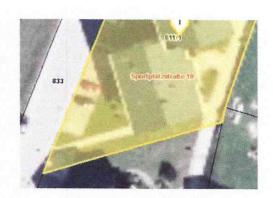
Lüftung:

Fensterlüftung

Berechnungsgrundlagen

Der Energieausweis wurde mit folgenden ÖNORMen und Hilfsmitteln erstellt: GEQ von Zehentmayer Software GmbH - www.geq.at Bauteile nach ON EN ISO 6946 / Fenster nach ON EN ISO 10077-1 / Erdberührte Bauteile vereinfacht nach ON B 8110-6-1 / Unkonditionierte Gebäudeteile vereinfacht nach ON B 8110-6-1 / Wärmebrücken pauschal nach ON B 8110-6-1 / Verschattung vereinfacht nach ON B 8110-6-1

Verwendete Normen und Richtlinien:


ON B 8110-1 / ON B 8110-2 / ON B 8110-3 / ON B 8110-5 / ON B 8110-6-1 / ON H 5056-1 / ON EN ISO 13790 / ON EN ISO 13370 / ON EN ISO 6946 / ON EN ISO 10077-1 / OIB-Richtlinie 6 Ausgabe: April 2019

Anmerkung

Der Energieausweis dient zur Information über den energetischen Standard des Gebäudes. Der Berechnung liegen durchschnittliche Klimadaten, standardisierte interne Wärmegewinne sowie ein standardisiertes Nutzerverhalten zugrunde. Die errechneten Bedarfswerte können daher von den talsächlichen Verbrauchswerten abweichen. Bei Mehrfamilienwohnhäusern ergeben sich je nach Lage der Wohnung im Gebäude unterschiedliche nergiekennzahlen. Für die exakte Auslegung der Heizungsanlage muss eine Berechnung der Heizlast gemäß ÖNORM H 7500 erstellt werden.

Empfehlungen

Sportplatzstraße 10, Tür 1 3314 Strengberg Wohngebäude mit zehn und mehr Nutzungseinheiten, 83 m² Bruttogrundfläche

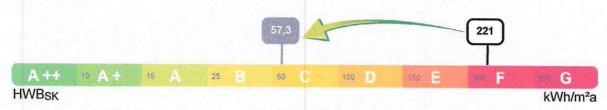
Wärmedämmung

Dämmen von AW01 - Außenwand mit 22 cm

Dämmen von IW01 - Wand zu unkonditioniertem außenluftexp. Stiegenhaus mit 22 cm

Dämmen von KD01 - Decke zu unkonditioniertem ungedämmten Keller mit 18 cm

Amortisation



Amortisation < 10 Jahre: 5 Sterne | < 20 Jahre: 4 Sterne | < 30 Jahre: 3 Sterne | < 40 Jahre: 2 Sterne | ab 40 Jahre: 1 Stern

Empfehlungen

Wärmedämmung

Empfohlene Dämmstoffdicke, Amortisation

AW01 - Außenwand (Invest. 102,- €/m², 0,031 W/mK)

22 cm, 8 Jahre

IW01 - Wand zu unkonditioniertem außenluftexp. Sti (Invest. 102,- €/m², 0,031 W/mK)

22 cm, 13 Jahre

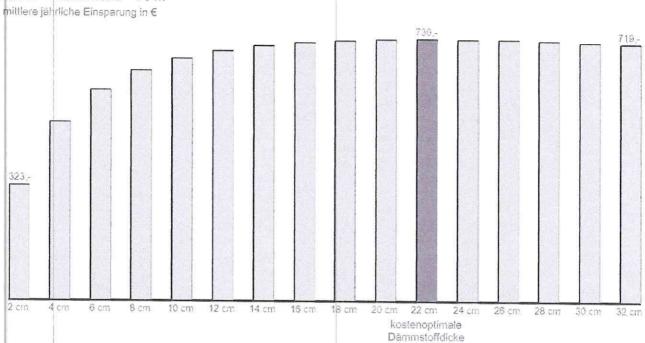
KD01 - Decke zu unkonditioniertem ungedämmten Kell (Invest. 84,- €/m², 0,031 W/mK)

18 cm. 21 Jahre

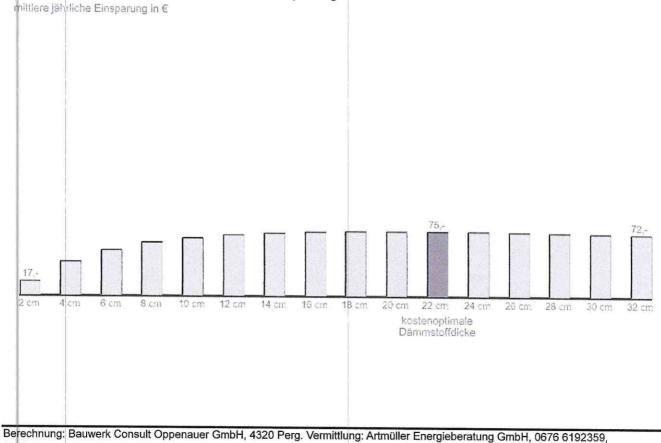
Der Fenstertausch von U-Glas 1,10, U-Rahmen 1,65 W/m²K, U-Wert 2,50 W/m²K ist nicht wirtschaftlich.

Dämmstoffpreise: Wand 190,- €/m³ (0,031 W/mK); Kellerdecke 190,- €/m³ (0,031 W/mK);

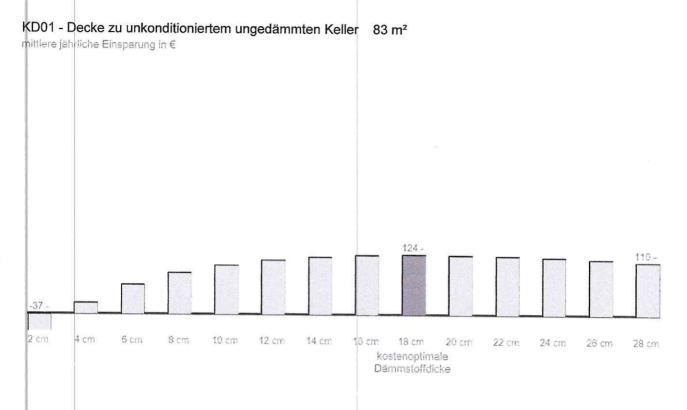
Fensterpreise: Fenster Uw 0,8 W/m²K 550,- €/m²;


Betrachtungszeitraum: 30 Jahre

Preise inkl. aller Steuern. Die angeführten Preise stellen kein Angebot dar. Kostensteigerung Energiepreis 3 % p.a., kalkulatorische Zinsen 2 % p.a.


Berechnung gemäß ÖNORM B 8110-4

Kostenoptimale Dämmstoffdicke



IW01 - Wand zu unkonditioniertem außenluftexp. Stiegenhaus 15 m²

Kostenoptimale Dämmstoffdicke

Für die mittlere jährliche Einsparung wird die "Einsparung gesamt "durch den Betrachtungszeitraum dividiert. Einsparung gesamt = Energiekostenersparnis - Investitionskosten

Energieeinsparung

AW01 - Außenwand 6 845 kWh IW01 - Wand zu unkonditioniertem außenluftexp. Stiegenhaus 946 kWh KD01 - Decke zu unkonditioniertem ungedämmten Keller 2 773 kWh

Vergleich Haus-Auto

Empfehlung

221 kWh/m²a

57 kWh/m²a

22,5 I/100km

5,8 1/100km

Der Vergleich zwischen Haus und Auto veranschaulicht den Heizwärmebedarf. Ein Haus mit einem Heizwärmebedarf von 57 kWh/m²Jahr entspricht einem Treibstoffverbrauch von ca. 5,8 l/100km

Heizlast Abschätzung

Bestand Tempelmayr, Strengberg, Sportplatzstraße

Abschätzung der Gebäude-Heizlast auf Basis	der
Energieausweis-Berechnung	

Berechnungsblatt							
Bauherr Ingeborg und Leopold Tempelmay Sportplatzstraße 10/1 und Elisabe 3314 Strengberg und 3350 Haag		PI	aner / E	Baufirma / Ha	ausverwa	Itung	
Tel.: 0676 707 84 43		Te	el.:				
Norm-Außentemperatur:	-13,9 °C	St	andort:	Strengberg			
Berechnungs-Raumtemperatur:	22 °C	Br	utto-Ra	uminhalt der			
Temperatur-Differenz:	35,9 K	be	heizten	Gebäudeteil	e:	268,84 m ³	
		G	ebäudel	nüllfläche:		184,25 m²	
Bauteile			Fläche A [m²]	Wärmed koeffizient U [W/m² K]	Korr faktor f [1]		Leitwert
AW01 Außenwand			69,69	1,200	1,00		83,63
FE/TÜ Fenster u. Türen			16,29	1,545	,		25,16
KD01 Decke zu unkonditionierte	m ungedämmten Keller		82,85	0,655	0,70		37,99
IW01 Wand zu unkonditionierte Stiegenhaus	158		15,43	1,083	0,70		11,70
ZD01 warme Zwischendecke ge und Betriebseinheiten ZW01 Zwischenwand zu getrenr Betriebseinheiten Summe UNTEN-Bauteile			82,85 19,34 82,85	1,513 1,083			
Summe Zwischendecken			82,85				
Summe Außenwandfläche	en		69,69				
Summe Innenwandfläche	n		15,43				
Summe Wandflächen zun	n Bestand		19,34				
Fensteranteil in Außenwä	nden 16,7 %		14,00				
Fenster in Innenwänden			2,29				
Summe					[W/H	q	158
Wärmebrücken (vereinf	acht)				[W/H	q	16
Transmissions - Leitwe	rt				[W/k	(1 1	74,32
Lüftungs - Leitwert					[W/k		22,26
Gebäude-Heizlast Abscl	hätzung ^L	uftw	echsel =	0,38 1/h	[kW	/]	7,1
Flächenbez. Heizlast Ab	schätzung (83 m²)		[W/	m ² BGF	=]	85,19

Die Gebäude-Heizlast Abschätzung dient als Anhaltspunkt für die Auslegung des Wärmeerzeugers. Für die Dimensionierung ist eine Heizlast-Berechnung gemäß ÖNORM H 7500 erforderlich.

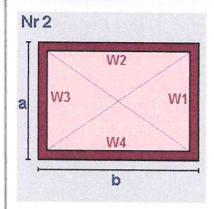
Die erforderliche Leistung für die Warmwasserbereitung ist unberücksichtigt.

Bauteile

Bestand Tempelmayr, Strengberg, Sportplatzstraße

AW01 Außenwand bestehend	von Innen nach	Außen	Dicke	λ	d/λ
fiktiver Bestandsaufbau (U-Wert = 1,200)	В	NICE TO SECURE	0,3400	0,513	0,663
	Rse+Rsi = 0,17	Dicke gesamt		U-Wert *	
IW01 Wand zu unkonditioniertem außenlu	ıftexp. Stiegenhaus		2000		
bestehend	von Innen nach	Außen	Dicke	λ	d/ λ
fiktiver Bestandsaufbau (U-Wert = 1,200)	В		0,3400	0,513	0,663
10 100	Rse+Rsi = 0,26	Dicke gesamt	0,3400	U-Wert	1,08
KD01 Decke zu unkonditioniertem ungedä	immten Keller		33843 2325	WELL BLEVELEIN	.,
bestehend	von Innen nach	Außen	Dicke	λ	d/ λ
fiktiver Bestandsaufbau (U-Wert = 1,350)	В		0,3000	0,749	0,401
Frigolith	В		0,0300	0,042	0,714
PL Gipskarton oder Gipsfaser	В		0,0150	0,210	0,071
	Rse+Rsi = 0,34	Dicke gesamt	0,3450	U-Wert	0,66
ZD01 warme Zwischendecke gegen getrei	nnte Wohn- und Betrie	ebseinheiten			
bestehend	von Innen nach		Dicke	λ	d/λ
fiktiver Bestandsaufbau (U-Wert = 1,350)	В		0,3000	0,749	0,401
	Rse+Rsi = 0,26	Dicke gesamt	0,3000	U-Wert	1,51
ZW01 Zwischenwand zu getrennten Wohn	- oder Betriebseinheit				
bestehend	von Innen nach		Dicke	λ	d/ λ
fiktiver Bestandsaufbau (U-Wert = 1,200)	В		0,3400	0,513	0,663
	Rse+Rsi = 0,26	Dicke gesamt	0,3400	U-Wert	1,08

Einheiten: Dicke [m], Achsabstand [m], Breite [m], U-Wert [W/m²K], Dichte [kg/m²], \(\lambda_{\text{IW/mK}}\)


*... Schicht zählt nicht zum U-Wert F... enthäll Flächenheizung B... Bestandsschicht **... Defaultwert It. OIB

RTu ... unterer Grenzwert RTo ... oberer Grenzwert laut ÖNORM EN ISO 6946

Geometrieausdruck

Bestand Tempelmayr, Strengberg, Sportplatzstraße

EG Grundform

a = 12,13 b = 6,83 lichte Raumhöhe = 2,60 + obere Decke: 0,30 => 2,90m BGF 82,85m² BRI 240,26m³

Wand W1 19,34m² ZW01 Zwischenwand zu getrennten Wohn- oder Teilung 5,46 x 2,90 (Länge x Höhe) 15,83m² IW01 Wand zu unkonditioniertem außenluftex

Wand W2 19,81m² AW01 Außenwand

Wand W3 35,18m² AW01 Wand W4 19,81m² AW01

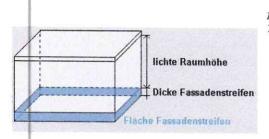
Decke 82,85m² ZD01 warme Zwischendecke gegen getrennte W Boden 82,85m² KD01 Decke zu unkonditioniertem ungedämmte

EG Summe

EG Bruttogrundfläche [m²]: EG Bruttorauminhalt [m³]: 82,85 240,26

Deckenvolumen KD01

Fläche


 $82,85 \text{ m}^2 \times \text{Dicke } 0,35 \text{ m} =$

28,58 m³

Bruttorauminhalt [m³]:

28,58

Fassadenstreifen - Automatische Ermittlung

wana		Boden	Dicke	Länge	Fläche
AW01	=	KD01	0,345m	25,79m	8,90m²
IW01	-	KD01	0,345m	5,46m	1,88m²

Gesamtsumme Bruttogeschoßfläche [m²]: 82,85 Gesamtsumme Bruttorauminhalt [m³]: 268,84

Fenster und Türen

Bestand Tempelmayr, Strengberg, Sportplatzstraße

9.	Тур		Bauteil	Anz	z. Bezeichnung	Breite m	Höhe m	Fläche m²	Ug W/m²K	Uf W/m²K	PSI W/mK	Ag m²	Uw W/m²K	AxUxf W/K	g	fs
3			Prüfnor	mma	ıß Typ 1 (T1)	1,23	1,48	1,82	1,10	1,65	0,060	1,12	1,45	I Inc.	0,62	
					300 A 1000	* ****						1,12				
-	NO															
3 .	T1	EG	AW01	2	1,32 x 1,45	1,32	1,45	3,83	1,10	1,65	0,060	2,04	1,56	5,97	0,62	0,40
			- 1117	2				3,83				2,04		5,97	GOVERNMENT OF THE PARTY OF THE	
1	W															
3		EG	IW01	1	1,09 x 2,10	1,09	2,10	2,29					2,50	4,01		
	1	050		1	10.00			2,29				0,00	* 19/10	4,01		
5	\$O															
•	T1	EG	AW01	1	1,70 x 1,45	1,70	1,45	2,47	1,10	1,65	0,060	1,43	1,50	3,71	0,62	0,40
				1				2,47				1,43		3,71		
5	SW															
	T1	EG	AW01	1	1,44 x 1,45	1,44	1,45	2,09	1,10	1,65	0,060	1,15	1,54	3,21	0,62	0,40
3	11	EG	AW01	2	0,92 x 2,32	0,92	2,32	4,27	1,10	1,65	0,060	2,64	1,46	6,24		0,40
3 -	11	EG	AW01	1	0,93 x 1,45	0,93	1,45	1,35	1,10	1,65	0,060	0,74	1,51	2,04	20.00	0,40
				4	133/210	- to add - if		7,71			-	4,53		11,49		
Su	mme	1		8				16,30				8,00		25,18		

Ug. Uwert Glas Uf... Uwert Rahmen PSI .. Linearer Korrekturkoeffizient Ag... Glasfläche

g... Energiedurchlassgrad Verglasung fs... Verschattungsfaktor

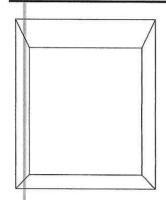
Typ... Prüfnommaßtyp

Rahmen

Bestand Tempelmayr, Strengberg, Sportplatzstraße

Bezeichnung	Rb.re.	Rb.li.	Rb.o.	Rb.u. m	%	Stulp Anz.	Stb	. Pfost Anz.		The state of the state of	V-Sp. Anz.	Spb. m	
Typ 1 (T1)	0,120	0,120	0,250	0,120	39								Kunststoff-Hohlprofil (58 < d < = 70 mm)
1,32 x 1,45	0,120	0,120	0,250	0,120	47			1	0,120				Kunststoff-Hohlprofil (58 < d < = 70 mm)
1,70 x 1,45	0,120	0,120	0,250	0,120	42			1	0,120				Kunststoff-Hohlprofil (58 < d < = 70 mm)
1,44 x 1,45	0,120	0,120	0,250	0,120	45			1	0,120				Kunststoff-Hohlprofil (58 < d < = 70 mm)
0,92 x 2,32	0,120	0,120	0,250	0,120	38								Kunststoff-Hohlprofil (58 < d < = 70 mm)
0,93 x 1,45	0,120	0,120	0,250	0,120	45								Kunststoff-Hohlprofil (58 < d < = 70 mm)

Rb.li,re,o,u Rahmenbr Sto. Stulpbreite [m] Pfip. Pfostenbreite [m] Typ Prüfnormmaßtyp Rahmenbreite links,rechts,oben, unten [m]


H-Sp. Anz Anzahl der horizontalen Sprossen V-Sp. Anz Anzahl der vertikalen Sprossen

Rahmenanteil des gesamten Fensters

Spb. Sprossenbreite [m]

Fensterdruck

Bestand Tempelmayr, Strengberg, Sportplatzstraße

Fenster Abmessung Prüfnormmaß Typ 1 (T1)

1,23 m x 1,48 m

Uw-Wert

1,45 W/m2K

g-Wert

0,62

links

Rahmenbreite

0,12 m oben 0,25 m

rechts 0,12 m unten 0,12 m

Glas	ARKTIS ultra K STABIL WS-Glas (4/16/4, Ar 90%)	Ug	1,10 W/m²K
Rahmen	Kunststoff-Hohlprofil (58 < d < = 70 mm)	Uf	1,65 W/m²K
Psi (Abstandh.)	-	Psi	0,060 W/mK

Warmedurchgangskoeffizient (U-Wert), berechnet nach ÖNORM EN ISO 10077-1

RH-Eingabe

Bestand Tempelmayr, Strengberg, Sportplatzstraße

Raumheizung

Allgemeine Daten

Wärmebereitstellung

gebäudezentral

Abgabe

Heizkostenabrechnung

Individuelle Wärmeverbrauchsermittlung und Heizkostenabrechnung (Fixwert)

Speicher

kein Wärmespeicher vorhanden

Bereitstellung

Bereitstellungssystem Stromheizung direkt

*) Wert pro Wärmebereitstellungseinheit (Wohnung bzw. Nutzungseinheit)

WWB-Eingabe

Bestand Tempelmayr, Strengberg, Sportplatzstraße

	Warr	nwasse	rbereitu	ıng		
Allgemeine Daten Wärmebereitstellung	gebäudezentral getrennt von Rauml	neizung				
Abgabe Heizkostenabrechnung	Individuelle Wärme	/erbrauchse	rmittlung ur	nd Heizkoster	nabrechnu	ng (Fixwert)
Wärmeverteilung oh	ne Zirkulation			Leitungslänge	en It. Defai	ultwerten
gedämi	mt Verhältnis Dämmstoffdicke zu	100	Dämmung	Leitungslänge [m]	konditionie [%]	
Verteilleitungen Nei	Rohrdurchmesser n	[mm] 20,0	Nein	7,86	100	
Steigleitungen Nei	n	20,0	Nein	3,31	100	
Stichleitungen				13,26	Material (Stahl 2,42 W/m
<u>Speicher</u>					***************************************	
Art des Speichers	direkt elektrisch beha	eizter Speicl	ner m	it Elektropatro	one	
Standort	konditionierter Berei	ch				
Baujahr	Vor 1989					
Nennvolumen	150 l Defaul					
Täglicher Bereitsch	aftsverlust Wärmespe	eicher d	b,WS =	1,87 kWh/	d Defa	aultwert
Bereitstellung Bereitstellungssystem	Stromheizung direkt					
*) Wert pro Wärmebereitstellungsein	heit (Wohnung bzw. Nutzungs	einheit)		- X - X - X - X - X - X - X - X - X - X	10.	

Endenergiebedarf

Bestand Tempelmayr, Strengberg, Sportplatzstraße

	Enden	erg	iebeda	<u>rf</u>	
Heizenergiebedarf	Q _{HEB}	=	19 484	kWh/a	
Haushaltsstrombedarf	Q _{HHSB}	=	1 887	kWh/a	
Netto-Photovoltaikertrag	NPVE	=	0	kWh/a	
Endenergiebedarf	Q _{EEB}	=	21 371		
	Heizener	gieb	edarf - H	EB	
Heizenergiebedarf	\mathbf{Q}_{HEB}	=	19 484	kWh/a	
Heiztechnikenergiebedarf	Q _{HTEB}	=	1 829	kWh/a	
Warmwasserwärmebedarf	Qtw	=	847	kWh/a	
The state of the s	Warmwa	asse	rbereitur	ng	
<u>Wärmeverluste</u>					
Abgabe	$Q_{TW,V}$	va =		kWh/a	
Verteilung	$Q_{TW,V}$	w =		kWh/a	
Speicher Bereitstellung	$Q_{TW,V}$	NS =	1 157		
Detellatellating	Q _{TW,V}	NB -		kWh/a 	
	Q_{TW}	=	1 745	kWh/a	
<u> Hilfsenergiebedarf</u>					
Verteilung	$Q_{TW,W}$	/√,HE =	0	kWh/a	
Speicher	Q _{TW,W}			kWh/a	
Bereitstellung	$Q_{TW,W}$	30-000-000-0	0	kWh/a 	
	Q _{TW,HI}	E =	0	kWh/a	
Heiztechnikenergiebedarf - Warmwasse	er Q _{HTEE}	_{B,TW} =	1 745	kWh/a	
1	Q HEB	_{3,TW} =	2 592	1.1811.1	

Endenergiebedarf

Bestand Tempelmayr, Strengberg, Sportplatzstraße

eizwärmebedarf	Q_h	=	16 808 kWh/a
Wärmegewinne	Q_g	=	3 325 kWh/a
Innere Wärmegewinne	Qi	=	2 206 kWh/a
Solare Wärmegewinne	Q_s	=	1 119 kWh/a
Wärmeverluste	QI	=	21 754 kWh/a
Lüftungswärmeverluste	Q_V	=	2 464 kWh/a
Transmissionswärmeverluste	Q_T	=	19 290 kWh/a

	Raum	he	izung	
<u>Wärmeverluste</u>				
Abgabe	$Q_{H,WA}$	=	0 kWh/a	
Verteilung	$Q_{H,WV}$	=	0 kWh/a	
Speicher	Q _{H,WS}	=	0 kWh/a	
Bereitstellung	Q _{H,WB}	=	84 kWh/a	
	Q_{H}	=	84 kWh/a	
lilfsenergiebedarf				
Abgabe	$Q_{H,WA,HE}$	=	0 kWh/a	
Verteilung	Q _{H,WV,HE}	=	0 kWh/a	
Speicher	Q _{H,WS,HE}	=	0 kWh/a	
Bereitstellung		=	0 kWh/a	
	Q _{H,HE}	=	0 kWh/a	
leiztechnikenergiebedarf Raumheizung	Q _{HTEB,H} =	=	84 kWh/a	
 	Q _{HEB,H}	=	16 892 kWh/a	

Zurückgewinnbare Verluste

Raumheizung	Q _{H,beh} =	0 kWh/a
Warmwasserbereitung	Q _{TW,beh} =	1 620 kWh/a

Energiekennzahlen für die Anzeige in Druckwerken und elektronischen Medien

Energieausweis-Vorlage-Gesetz 2012 - EAVG 2012

Bezeichnung Bestand Tempelmayr, Strengberg, Sportplatzstraße

Gebäudeteil EG Wohnung 1

Wohngebäude mit zehn und mehr Nutzungseinheiten Nutzungsprofil

Straße Sportplatzstraße 10, Tür 1

PLZ/Ort 3314 Strengberg

Grundstücksnr. 611/1

Baujahr

1972

Katastralgemeinde

Strengberg 3133

KG-Nr. Seehöhe

359 m

Energiekennzahlen It. Energieausweis

HWB_{Ref,SK} 221 **f**GEE.SK 3,82

Energieausweis Ausstellungsdatum 07.03.2025

Gültigkeitsdatum 06.03.2035

Der Energieausweis besteht aus - den ersten zwei Seiten (im Falle von Sonstigen konditionierten Gebäuden auch aus mehr Seiten, denn ab der 3. Seite strukturierte Auflistung der U-Werte) gemäß dem im Anhang dieser Richtlinie festgelegten Layout und

einem technischen Anhang

Der Referenz-Heizwärmebedarf ist jene Wärmemenge, die in den Räumen bereitgestellt werden muss, um diese auf einer normativ geforderten Raumtemperatur, ohne Berücksichtigung allfälliger Erträge aus Wärmerückgewinnung, zu halten.

fGEE

Der Gesamtenergieeffizienz-Faktor ist der Quofient aus einerseits dem Endenergiebedarf abzüglich allfälliger Endenergieerträge und zuzüglich des dafür notwendigen Hilfsenergiebedarfs und andererseits einem

Referenz-Endenergiebedarf (Anforderung 2007).

Das Standorfklima ist das reale Klima am Gebäudestandort. Dieses Klimamodell wurde auf Basis der Primärdaten (1970 bis 1999) der Zentralanstalt für Meteorologie und Geodynamik für die Jahre 1978 bis 2007 gegenüber der

Vorfassung aktualisiert.

Wird ein Gebäude oder ein Nutzungsobjekt in einem Druckwerk oder einem elektronischen Medium zum Kauf oder zur EAVG §3 In-Bestand-Nahme angeboten, so sind in der Anzeige der Heizwärmebedarf und der Gesamtenergieeffizienz-Faktor des Gebäudes oder des Nutzungsobjekts anzugeben. Diese Pflicht gilt sowohl für den Verkäufer oder Bestandgeber als auch für den von diesem beauftragten Immobilienmakler.

EAVG §4

(1) Beim Verkauf eines Gebäudes hat der Verkäufer dem Kaufer, bei der In-Bestand-Gabe eines Gebäudes der Bestandgeber dem Bestandnehmer rechtzeitig vor Abgabe der Vertragserklärung des Käufers oder Bestandnehmers einen zu diesem Zeitpunkt höchstens zehn Jahre alten Energieausweis vorzulegen und ihm diesen oder eine vollständige Kopie desselben binnen 14 Tagen nach Vertragsabschluss auszuhändigen.

EAVG §6

Wird dem Käufer oder Bestandnehmer vor Abgabe seiner Vertragserklärung ein Energieausweis vorgelegt, so gilt die darin angegebene Gesamtenergieeffizienz des Gebäudes als bedungene Eigenschaft im Sinn des § 922 Abs. 1 ABGB

EAVG §7

(1) Wird dem Käufer oder Bestandnehmer entgegen § 4 nicht bis spätestens zur Abgabe seiner Vertragserklärung ein Energieausweis vorgelegt, so gilt zumindest eine dem Alter und der Art des Gebäudes entsprechende Gesamtenergieeffizienz als vereinbart

(2) Wird dem Käufer oder Bestandnehmer entgegen § 4 nach Vertragsabschluss kein Energieausweis ausgehändigt, so kann er entweder sein Recht auf Ausweisaushändigung gerichtlich geltend machen oder selbst einen Energieausweis einholen und die ihm daraus entstandenen Kosten vom Verkäufer oder Bestandgeber ersetzt begehren.

EAVG §8

Vereinbarungen, die die Vorlage- und Aushändigungspflicht nach § 4, die Rechtsfolge der Ausweisvorlage nach § 6, die Rechtsfolge unterlassener Vorlage nach § 7 Abs. 1 einschließlich des sich daraus ergebenden Gewährleistungsanspruchs oder die Rechtsfolge unterlassener Aushändigung nach § 7 Abs. 2 ausschließen oder einschränken, sind unwirksam.

EAVG §9

(1) Ein Verkäufer, Bestandgeber oder Immobilienmakler, der es entgegen § 3 unterlässt, in der Verkaufs- oder In-Bestand-Gabe-Anzeige den Heizwärmebedarf und den Gesamtenergieeffizienz-Faktor des Gebäudes oder des Nutzungsobjekts anzugeben, begeht, sofern die Tat nicht den Tatbestand einer gerichtlich strafbaren Handlung erfüllt oder nach anderen Verwaltungsstrafbestimmungen mit strengerer Strafe bedricht ist, eine Verwaltungsübertretung und ist mit einer Geldstrafe bis zu 1 450 Euro zu bestrafen. Der Verstoß eines Immobilienmaklers gegen § 3 ist entschuldigt, wenn er seinen Auftraggeber über die Informationspflicht nach dieser Bestimmung aufgeklärt und ihn zur Bekanntgabe der beiden Werte beziehungsweise zur Einholung eines Energieausweises aufgefordert hat, der Auftraggeber dieser Aufforderung jedoch nicht nachgekommen ist.

(2) Ein Verkäufer oder Bestandgeber, der es entgegen § 4 unterlässt,

dem Käufer oder Bestandnehmer rechtzeitig einen höchstens zehn Jahre alten Energieausweis

dem Käufer oder Bestandnehmer nach Vertragsabschluss einen Energieausweis oder eine vollständige Kopie desselben auszuhändigen, begeht, sofern die Tat nicht den Tatbestand einer gerichtlich strafbaren Handlung erfüllt oder nach anderen Verwaltungsstrafbestimmungen mit strengerer Strafe bedroht ist, eine Verwaltungsübertretung und ist mit einer Geldstrafe bis zu 1450 Euro zu bestrafen.

Berechnung: Bauwerk Consult Oppenauer GmbH, 4320 Perg. Vermittlung: Artmüller Energieberatung GmbH, 0676 6192359, GEQ von Zehentmayer Software GmbH www.geq.at Bearbeiter Artmüller Energieberatung G p2025,405501 REPEAVG2 o1921 - Niederösterreich 07 03 2025 Seite 19

/orlagebestätigung

Energieausweis-Vorlage-Gesetz 2012 – EAVG 2012

Bezeichnung Bestand Tempelmayr, Strengberg, Sportplatzstraße

Gebäudeteil EG Wohnung 1

Nutzungsprofil Wohngebäude mit zehn und mehr Nutzungseinheiten Bauiahr 1972

Straße Sportplatzstraße 10, Tür 1 Katastralgemeinde Strengberg

PLZ/Ort 3314 Strengberg KG-Nr. 3133

Grundstücksnr. 611/1

Seehöhe 359 m

Energiekennzahlen It. Energieausweis

HWB_{Ref,SK} 221 f_{GEE,SK} 3,82

Der Energieausweis besteht aus den ersten zwei Seiten (im Falle von Sonstigen konditionierten Gebäuden auch aus mehr Seiten, denn ab der 3. Seite strukturierte Auflistung der U-Werte) gemäß dem im Anhang dieser Richtlinie festgelegten Layout und - einem technischen Anhang Der Vorlegende bestätigt, dass der Energieausweis vorgelegt wurde. Ort, Datum Name Vorlegender Unterschrift Vorlegender Der Interessent bestätigt, dass ihm der Energieausweis vorgelegt wurde. Ort, Datum Name Interessent Unterschrift Interessent HWB_{Ref} Der Referenz-Heizwärmebedarf ist jene Wärmemenge, die in den Räumen bereitgestellt werden muss, um diese auf einer normativ geforderten Raumtemperatur, ohne Berücksichtigung allfälliger Erträge aus Wärmerückgewinnung, zu halten Der Gesamtenergieeffizienz-Faktor ist der Quotient aus einerseits dem Endenergiebedarf abzüglich allfälliger f GEE

Endenergieerträge und zuzüglich des dafür notwendigen Hilfsenergiebedarfs und andererseits einem

Referenz-Endenergiebedarf (Anforderung 2007).

Das Standortklima ist das reale Klima am Gebäudestandort. Dieses Klimamodell wurde auf Basis der Primardaten SK (1970 bis 1999) der Zentralanstalt für Meteorologie und Geodynamik für die Jahre 1978 bis 2007 gegenüber der . Vorfassung aktualisiert

EAVG §4

(1) Beim Verkauf eines Gebäudes hat der Verkäufer dem Käufer, bei der In-Bestand-Gabe eines Gebäudes der Bestandgeber dem Bestandnehmer rechtzeitig vor Abgabe der Vertragserklärung des Käufers oder Bestandnehmers einen zu diesem Zeitpunkt höchstens zehn Jahre alten Energieausweis vorzulegen und ihm diesen oder eine vollständige Kopie desselben binnen 14 Tagen nach Vertragsabschluss auszuhändigen.

Berechnung: Bauwerk Consult Oppenauer GmbH, 4320 Perg. Vermittlung: Artmüller Energieberatung GmbH, 0676 6192359, GEQ von Zehentmayer Software GmbH www.geq.at

Bearbeiter Artmüller Energieberatung G

p2025,405501 REPEAVG2 o1921 - Niederösterreich

07.03.2025

Seite 20

Aushändigungsbestätigung

Energieausweis-Vorlage-Gesetz 2012 - EAVG 2012

Bezeichnung Bestand Tempelmayr, Strengberg, Sportplatzstraße

Gebäudeteil EG Wohnung 1

Wohngebäude mit zehn und mehr Nutzungseinheiten Nutzungsprofil

Straße

Sportplatzstraße 10, Tür 1

PLZ/Ort 3314 Strengberg

Grundstücksnr. 611/1

Baujahr

1972

Katastralgemeinde

Strengberg

KG-Nr

3133

Seehöhe

359 m

Energiekennzahlen It. Energieausweis

HWB_{Ref,SK} 221

f_{GEE,SK} 3,82

Der Energieausweis besteht aus - den ersten zwei Seiten (im Falle von Sonstigen konditionierten Gebäuden auch aus mehr Seiten, denn ab der 3. Seite strukturierte Auflistung der U-Werte) gemäß dem im Anhang dieser

Richtlinie festgelegten Layout und

- einem technischen Anhang

Der Verkäufer/Bestandgeber bestätigt, dass der Energieausweis ausgehändigt wurde.

Ort, Datum

Name Verkäufer/Bestandgeber

Unterschrift Verkäufer/Bestandgeber

Der Käufer/Bestandnehmer bestätigt, dass ihm der Energieausweis ausgehändigt wurde.

Ort, Datum

Name Käufer/Bestandnehmer

Unterschrift Käufer/Bestandnehmer

Seite 21

HWB Ref

Der Referenz-Heizwärmebedarf ist jene Wärmemenge, die in den Räumen bereitgestellt werden muss, um diese auf einer normativ geforderten Raumtemperatur, ohne Berücksichtigung allfälliger Erträge aus Wärmerückgewinnung, zu halten.

f GEE

Der Gesamtenergieeffizienz-Faktor ist der Quotient aus einerseits dem Endenergiebedarf abzüglich allfälliger Endenergieerträge und zuzüglich des dafür notwendigen Hilfsenergiebedarfs und andererseits einem

Referenz-Endenergiebedarf (Anforderung 2007).

SK

Das Standortklima ist das reale Klima am Gebäudestandort. Dieses Klimamodell wurde auf Basis der Primärdaten (1970 bis 1999) der Zentralanstalt für Meteorologie und Geodynamik für die Jahre 1978 bis 2007 gegenüber der Vorfassung aktualisiert.

EAVG §4

(1) Beim Verkauf eines Gebäudes hat der Verkäufer dem Käufer, bei der In-Bestand-Gabe eines Gebäudes der Bestandgeber dem Bestandnehmer rechtzeitig vor Abgabe der Vertragserklärung des Käufers oder Bestandnehmers einen zu diesem Zeitpunkt höchstens zehn Jahre alten Energieausweis vorzulegen und ihm diesen oder eine vollständige Kopie desselben binnen 14 Tagen nach Vertragsabschluss auszuhändigen.

Berechnung: Bauwerk Consult Oppenauer GmbH, 4320 Perg. Vermittlung: Artmüller Energieberatung GmbH, 0676 6192359, GEQ von Zehentmayer Software GmbH www.geq.at Bearbeiter Artmüller Energieberatung G p2025,405501 REPEAVG2 o1921 - Niederösterreich 07.03.2025