XENON CONSULTING GmbH.
BM. Ing. Zehetner
Maria Ponsee 40
3454 Reidling
02276/2078
office@xenon.cc

ENERGIEAUSWEIS

Ist-Zustand

Wohnhaus Nazarenko-Mitterndorf

Dipl. Ing. Dr. Valerie Nazarenko Dorfstraße 9 3452 Mitterndorf

Energieausweis für Wohngebäude

BEZEICHNUNG Wohnhaus Nazarenko-Mitterndorf Umsetzungsstand Ist-Zustand Gebäude(-teil) Wohnbereich Baujahr Nutzungsprofil Wohngebäude mit einer oder zwei Nutzungseinheiten Letzte Veränderung Straße Dorfstraße 9 Katastralgemeinde Mitterndorf PLZ/Ort 3451 Michelhausen KG-Nr. 20151 Grundstücksnr.

SPEZIFISCHER REFERENZ-HEIZWÄRMEBEDARF, PRIMÄRENERGIEBEDARF KOHLENDIOXIDEMISSIONEN und GESAMTENERGIEEFFIZIENZ-FAKTOR jeweils unter STANDORTKLIMA-(SK)-Bedingungen

Seehöhe

195 m

A++	HWB _{Ref,SK}	PEB _{SK}	CO _{2eq,SK}	f _{GEE,SK}
A+				
A				
В				
С				
D				
E	-			
F	E			F
G		G	G	

HWB_{Ref}: Der Referenz-Heizwärmebedarf ist jene Wärmemenge, die in den Räumen bereitgestellt werden muss, um diese auf einer normativ geforderten Raumtemperatur, ohne Berücksichtigung allfälliger Erträge aus Wärmerückgewinnung, zu halten.

WWWB: Der Warmwasserwärmebedarf ist in Abhängigkeit der Gebäudekategorie als flächenbezogener Defaultwert festgelegt.

HEB: Beim Heizenergiebedarf werden zusätzlich zum Heiz- und Warmwasser-wärmebedarf die Verluste des gebäudetechnischen Systems berücksichtigt, dazu zählen insbesondere die Verluste der Wärmebereitstellung, der Wärmeverteilung, der Wärmespeicherung und der Wärmeabgabe sowie allfälliger Hilfsenergie.

HHSB: Der Haushaltsstrombedarf ist als flächenbezogener Defaultwert festgelegt. Er entspricht in etwa dem durchschnittlichen flächenbezogenen Stromverbrauch eines österreichischen Haushalts.

RK: Das Referenzklima ist ein virtuelles Klima. Es dient zur Ermittlung von

EEB: Der Endenergiebedarf umfasst zusätzlich zum Heizenergiebedarf den Haushaltsstrombedarf, abzüglich allfälliger Endenergieerträge und zuzüglich eines dafür notwendigen Hilfsenergiebedarfs. Der Endenergiebedarf entspricht jener Energiemenge, die eingekaulit werden muss (Lieferenergiebedarf).

fase: Der **Gesamtenergieeffizienz-Faktor** ist der Quotient aus einerseits dem Endenergiebedarf abzüglich allfälliger Endenergieerträge und zuzüglich des dafür notwendigen Hilfsenergiebedarfs und andererseits einem Referenz-Endenergiebedarf (Anforderung 2007).

PEB: Der **Primärenergiebedarf** ist der Endenergiebedarf einschließlich der Verluste in allen Vorketten. Der Primärenergiebedarf weist einen erneuerbaren (PEB $_{\rm em.}$) und einen nicht erneuerbaren (PEB $_{\rm nem.}$) Anteil auf.

CO2eq: Gesamte dem Endenergiebedarf zuzurechnenden **äquivalenten** Kohlendioxidemissionen (Treibhausgase), einschließlich jener für Vorketten

SK: Das Standortklima ist das reale Klima am Gebäudestandort. Dieses Klimamodell wurde auf Basis der Primärdaten (1970 bis 1999) der Zentralanstalt für Meteorologie und Geodynamik für die Jahre 1978 bis 2007 gegenüber der Vorfassung aktualisiert.

Alle Werte gelten unter der Annahme eines normierten Benutzerinnenverhaltens. Sie geben den Jahresbedarf pro Quadratmeter beheizter Brutto-Grundfläche an.

Dieser Energieausweis entspricht den Vorgaben der OIB-Richtlinie 6 "Energieeinsparung und Warmeschutz" des Österreichischen Instituts für Bautechnik in Umsetzung der Richtlinie 2010/31/EU vom 19. Mai 2010 über die Gesamtenergieeffizienz von Gebäuden bzw. 2018/844/EU vom 30. Mai 2018 und des Energieausweis-Vorlage-Gesetzes (EAVG). Der Ermittlungszeitraum für die Konversionsfaktoren für Primärenergie und Kohlendioxidemissionen ist für Strom: 2018-01 – 2021-12, und es wurden übliche Allokationsregeln unterstellt.

Energieausweis für Wohngebäude

- m²

- m³

GEBÄ	UDEKE	NNDA	TEN
	ODLIL		V I E IV

Teil-BF

Teil-V_B

n.em. für RH+WW

Brutto-Grundfläche (BGF)	1 184,6 m²	Heiztag
Bezugsfläche (BF)	947,6 m²	Heizgra
Brutto-Volumen (V _B)	3 229,8 m³	Klimare
Gebäude-Hüllfläche (A)	2 073,6 m ²	Norm-A
Kompaktheit (A/V)	0,64 1/m	Soll-Inn
charakteristische Länge (lc)	1,56 m	mittlere
Teil-BGF	- m²	LEK

Heiztage	365 d	
Heizgradtage	3 668 Kd	
Klimaregion	N	
Norm-Außentemperatur	-14,3 °C	
Soll-Innentemperatur	22,0 °C	
mittlerer U-Wert	1,12 W/m²K	
LEK _T -Wert	94,35	
Bauweise	mittelschwer	

mittelschwer

	EA-Art:
Art der Lüftung	77. C.
Solarthermie	Fensterlüftung
Market Brown Brown Brown	- m²
Photovoltaik	- kWp
Stromspeicher	-
WW-WB-System (prima	är)
WW-WB-System (seku	ndär, opt)

RH-WB-System (primär)

RH-WB-System (sekundär, opt.)

WÄRME- UND ENERGIEBEDARF (Referenzklima)

Ergebnisse

Referenz-Heizwärmebedarf HWB_{Ref,RK} = 177,7 kWh/m²a Endenergiebedarf EEB_{RK} = 338,4 kWh/m²a Gesamtenergieeffizienz-Faktor fGEE,RK = 3,42

Heizwärmebedarf HWB_{RK} = 177,7 kWh/m²a Primärenergiebedarf PEB_{HEB.n.ern..RK} = 387,2 kWh/m²a

WÄRME- UND ENERGIEBEDARF (Standortklima)

Referenz-Heizwärmebedarf Qh,Ref,SK = 234 461 kWh/a Heizwärmebedarf Qh,sk = 234 461 kWh/a Warmwasserwärmebedarf 9 080 kWh/a Qtw = Heizenergiebedarf QHEB,SK = 417 669 kWh/a Energieaufwandszahl Warmwasser Energieaufwandszahl Raumheizung Energieaufwandszahl Heizen Haushaltsstrombedarf Q_{HHSB} = 16 454 kWh/a Endenergiebedarf QEEB,SK = 434 122 kWh/a Primärenergiebedarf QPEB,SK = 534 099 kWh/a Primärenergiebedarf nicht erneuerbar QPEBn.em.,SK = 511 317 kWh/a Primärenergiebedarf erneuerbar QPEBern.,SK = 22 782 kWh/a äquivalente Kohlendioxidemissionen Qco_{2eq,SK} = 114 946 kg/a Gesamtenergieeffizienz-Faktor Photovoltaik-Export QPVE,SK = - kWh/a PVE EXPORT, SK =

HWB sk = 197,9 kWh/m²a WWWB = $7.7 \text{ kWh/m}^2\text{a}$ $HEB_{SK} = 352,6 \text{ kWh/m}^2\text{a}$ $e_{AWZ,WW} = 8,34$ $e_{AWZ,RH} = 1,46$ $e_{AWZ,H} = 1,71$ HHSB = 13,9 kWh/m²a $EEB_{SK} = 366,5 \text{ kWh/m}^2\text{a}$ $PEB_{SK} = 450,9 \text{ kWh/m}^2\text{a}$ PEBn.em., SK = 431,7 kWh/m²a $PEB_{em.,SK} = 19.2 \text{ kWh/m}^2\text{a}$ $CO_{2eq,SK} = 97,0 \text{ kg/m}^2\text{a}$ $f_{GEE,SK} = 3,44$

- kWh/m²a

HWB Ref.SK = 197,9 kWh/m²a

ERSTELLT

GWR-Zahl Ausstellungsdatum 16.05.2025 Gültigkeitsdatum 15.05.2035 Geschäftszahl

Erstellerin

Unterschrift

XENON CONSULTING GmbH. Maria Ponsee 40 3454

archit

a-3454 maria p Die Energiekennzahlen dieses Energieausweises dienen ausschließlich der Information. Aufgrund der idealisierten Eingangsp Insbesondere Nutzungseinheiten unterschiedlicher Lage können aus Gründen der Geometrie und der Lage hinsichtlich ihrer E

Datenblatt GEO Wohnhaus Nazarenko-Mitterndorf

Anzeige in Druckwerken und elektronischen Medien

HWB_{Ref,SK} 198 f_{GEE.SK} 3,44

Gebäudedaten

Brutto-Grundfläche BGF 1 185 m² charakteristische Länge Ic 1,56 m Konditioniertes Brutto-Volumen 3 230 m³ Kompaktheit A B / VB 0,64 m⁻¹ Gebäudehüllfläche A_B 2 074 m²

Ermittlung der Eingabedaten

Geometrische Daten: Planskizzen, 12.05.2025 Bauphysikalische Daten: Planskizzen, 12.05.2025 Haustechnik Daten: Planskizzen, 12.05.2025

Haustechniksystem

Raumheizung: Flüssiger oder gasförmiger Brennstoff (Heizöl Extra leicht) Warmwasser Kombiniert mit Raumheizung

Lüftung: Fensterlüftung, Nassraumlüfter vorhanden

Berechnungsgrundlagen

Der Energieausweis wurde mit folgenden ÖNORMen und Hilfsmitteln erstellt: GEQ von Zehentmayer Software GmbH - www.geq.at Bauteile nach ON EN ISO 6946 / Fenster nach ON EN ISO 10077-1 / Erdberührte Bauteile vereinfacht nach ON B 8110-6-1 / Unkonditionierte Gebäudeteile vereinfacht nach ON B 8110-6-1 / Wärmebrücken pauschal nach ON B 8110-6-1 / Verschattung vereinfacht nach ON B 8110-6-1

Verwendete Normen und Richtlinien:

ON B 8110-1 / ON B 8110-2 / ON B 8110-3 / ON B 8110-5 / ON B 8110-6-1 / ON H 5056-1 / ON EN ISO 13790 / ON EN ISO 13370 / ON EN ISO 6946 / ON EN ISO 10077-1 / OIB-Richtlinie 6 Ausgabe: Mai 2023

Anmerkung

Der Energieausweis dient zur Information über den energetischen Standard des Gebäudes. Der Berechnung liegen durchschnittliche Klimadaten, standardisierte interne Wärmegewinne sowie ein standardisiertes Nutzerverhalten zugrunde. Die errechneten Bedarfswerte können daher von den tatsächlichen Verbrauchswerten abweichen. Bei Mehrfamilienwohnhäusern ergeben sich je nach Lage der Wohnung im Gebäude unterschiedliche Energiekennzahlen. Für die exakte Auslegung der Heizungsanlage muss eine Berechnung der Heizlast gemäß ÖNORM H 7500 erstellt werden.

Empfehlungen zur Verbesserung Wohnhaus Nazarenko-Mitterndorf

Gebäudehülle

- Dämmung Außenwand
- Fenstertausch
- Dämmung Außendecke / erdberührter Boden

Haustechnik

- Dämmung Wärmeverteilleitungen
- Einbau eines Regelsystems zur Optimierung der Wärmeabgabe
- Heizungstausch (Nennwärmeleistung optimieren)
- Einbau von leistungsoptimierten und gesteuerten Heizungspumpen
- Einregulierung / hydraulischer Abgleich
- Einbau einer Wohnraumlüftung mit Wärmerückgewinnung
- Errichtung einer thermischen Solaranlage

Im Anhang des Energieausweises ist anzugeben (OIB 2023): Empfehlung von Maßnahme deren Implementierung den Endenergiebedarf des Gebäudes reduziert und technisch und wirtschaftlich zweckmäßig ist.

Heizlast Abschätzung Wohnhaus Nazarenko-Mitterndorf

Abschätzung der Gebäude-Heizlast auf Basis der Energieausweis-Berechnung

Berechnungsblatt	latt
------------------	------

Bauherr

Bauherr Dipl. Ing. Dr. Valerie Nazarenko Dorfstraße 9 3452 Mitterndorf Tel.: Norm-Außentemperatur: -14,3 °C Berechnungs-Raumtemperatur: 22 °C Temperatur-Differenz: 36,3 K			Planer / Baufirma / Hausverwaltung XENON CONSULTING GmbH. Maria Ponsee 40 3454 Reidling Tel.: 02276/2078					
			Standort: Michelhausen Brutto-Rauminhalt der beheizten Gebäudeteile: 3 229,77 m³ Gebäudehüllfläche: 2 073,61 m²					
Bautei	ile		Fläche A [m²]	Wärmed koeffizient U [W/m² K]	Korr faktor f [1]	Leitwert		
AD01 AW01 AW02 AW03 DD01 DS01 FE/TÜ	Außenwand-Vollziegel 50cm Außendecke, Wärmestrom nach unten Dachschräge hinterlüftet		397,85 388,10 266,31 98,03 56,04 256,86 46,17	0,286 2,156 1,786 1,090 0,461 0,286 1,575	0,90 1,00 1,00 1,00 1,00 1,00	102,33 836,92 475,55 106,89 25,83 73,41 72,73		
EB01	erdanliegender Fußboden Summe OBEN-Bauteile	(<=1,5m unter Erdreich)	564,26 654,71	1,052	0,70	415,48		

Fensteranteil in Außenwänden 5,8 %	46,17		
Summe		[W/K]	2 109
Wärmebrücken (vereinfacht)		[W/K]	211
Transmissions - Leitwert		[W/K]	2 320,04
Lüftungs - Leitwert		[W/K]	234,56
Gebäude-Heizlast Abschätzung	Luftwechsel =		92,7
Flächenbez. Heizlast Abschätzung (1	185 m²)	[W/m² BGF]	78,28

620,30

752,44

Die Gebäude-Heizlast Abschätzung dient als Anhaltspunkt für die Auslegung des Wärmeerzeugers. Für die Dimensionierung ist eine Heizlast-Berechnung gemäß ÖNORM H 7500 erforderlich.

Die erforderliche Leistung für die Warmwasserbereitung ist unberücksichtigt.

Summe UNTEN-Bauteile

Summe Außenwandflächen

Bauteile

Wohnhaus Nazarenko-Mitterndorf

architectur+design

EB01 e	erdanliege	ender Fußbode	en (<=1	,5m unt	er Erdreich)					
bestehend					von Innen	nach Auß	en	Dicke	λ	d/λ
Fliesen 1.202.06 Est Dämmung	trichbeton				B B			0,0150 0,0500 0,0300	1,000 1,480	0,015
Massivbeton	1				В			0,1500	0,045 2,300	0,66° 0,06°
AW01 A	11000000	nd-Naturstein			Rse+Rsi = 0,17		Dicke gesamt	0,2450	U-Wert	1,08
bestehend	usenwar	nd-Naturstein								
Innenputz					von Innen	nach Auß	en	Dicke	λ	d/ λ
Naturstein Aussenputz					B B B			0,0150	1,000 2,300	0,015
					Rse+Rsi = 0,17		Dieks assemt	0,0250	1,400	0,018
AW02 A	ußenwar	nd-Vollziegel 2	5cm		1130 11131 - 0,17		Dicke gesamt	0,6400	U-Wert	2,16
bestehend					von Innen	nach Auße	en	Dicke	λ	d/λ
Innenputz Vollziegelma Aussenputz	uerwerk				B B B			0,0150 0,2500 0,0250	1,000 0,700 1,400	0,015 0,357 0.018
					Rse+Rsi = 0.17		Dicke gesamt		U-Wert	1,79
AW03 A	ußenwan	nd-Vollziegel 5	0cm				Trente geodini	0,2000	O-West	1,73
bestehend					von Innen	nach Auße	n	Dicke	λ	d/ λ
Innenputz					В			0.0150	1.000	0.015
Vollziegelma	uerwerk				В			0.5000	0,700	0,714
Aussenputz					В			0,0250	1,400	0,018
					Rse+Rsi = 0,17		Dicke gesamt		U-Wert	1,09
ZD01 w bestehend	arme Zwi	ischendecke								
Innenputz					von Innen r	nach Auße	n	Dicke	λ	d/λ
Dippelbaumd Staffel dazw.					В В В	10,0 9	%	0,0150 0,2000 0,0500	1,000 0,140 0,120	0,015 1,429 0,042
Luft steh., Holzboden, V		orizontal 45 < d	<= 50 m	nm	B B	90,09	%	0,0250	0,278	0,162 0,156
Staffel:		RTo 2,0611 Achsabstand		2,0505 Breite	RT 2,0558 0,080		Dicke gesamt Rse	The state of the s	U-Wert 26	0,49
	achschrä	ge hinterlüftet								
pestehend					von Außen	nach Inne	n	Dicke	λ	d/λ
Sparren dazw Luftschicht					B B	10,0 9		0,0400	0,120	0,033
Sparren dazw	1.				В	10,0 %		0,1400	0,750	0,048
Mineralwol					В	90,0 %	6		0,040	3,150
	ntbaupiatte	zementgebunde	n		В			0,0250	0,100	0,250
nnenputz		DT- 25505	D.T.	0.4005	В			0,0150	1,000	0,015
		RTo 3,5585	RIU	3,4399	RT 3,4992	1	Dicke gesamt		U-Wert	0,29
							Rse	-Rsi 0	,2	

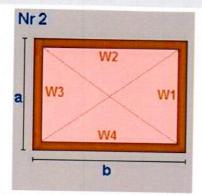
Bauteile

Wohnhaus Nazarenko-Mitterndorf

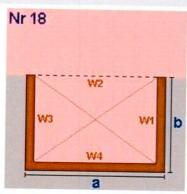
architectur+design

AD01 Decke zu bestehend						von Außen	nach Inne	en	Dicke	λ	d/ λ
Zangen dazw.						В	10,0	%	0.0400		0.033
Luftschicht						В	90.0	%	-1-1	0.750	0.048
Zangen dazw.						В	10,0		0.1400		0,040
Mineralwolle						В	90.0	%		0.040	3,150
Holzwolleleichtbaupla	tte zemer	ntgebunder	1			В	5000		0,0250	0,100	0.250
Innenputz						В			0,0150	1,000	0,015
	RTo	3,5585	RTu	3,4399	RT	3,4992		Dicke gesamt	0,2200	U-Wert	0.29
								Rse		0,2	1
DD01 Außende	cke, Wä	rmestron	n nach	unten							
bestehend						von Innen n	ach Auße	n	Dicke	λ	d/ λ

bestehend	endecke, Wärmestro	in theore differ	von Innen n	ach Außen	Dicke	λ	d/ λ
1.402.02 Holz			В		0.0250	0.140	0.179
Dippelbaumdeck	(e		В		0,2000	0.140	1,429
Staffel dazw.	BROWN CONTROL OF THE PROPERTY		В	10,0 %	0,0500	0.120	0.042
	Fluss horizontal 45 < d	<= 50 mm	В	90,0 %		0.278	0.162
Holzboden, Vollh	nolz		В		0,0250	0,160	0,156
	RTo 2,1748	RTu 2,1641	RT 2,1694	Dicke ge	samt 0,3000	U-Wert	0.46
Staffel: Achsabstand 0,8		0,800 Breite	0,080			21	-9

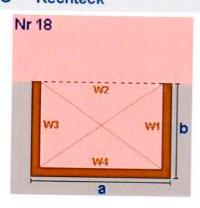

Einheiten: Dicke [m], Achsabstand [m], Breite [m], U-Wert [W/m²K]. Dichte [kg/m³], λ [W/mK] *... Schicht zählt nicht zum U-Wert F... enthält Flächenheizung B... Bestandsschicht RTu ... unterer Grenzwert RTo ... oberer Grenzwert laut ÖNORM EN ISO 6946

Geometrieausdruck Wohnhaus Nazarenko-Mitterndorf


architectur+design

EG Grundform

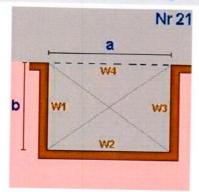
a = 9,34 b = 31,39lichte Raumhöhe = 2,50 + obere Decke: 0,29 => 2,79m 293,18m² BRI 817,98m³ Wand W1 26,06m2 AW01 Außenwand-Naturstein Wand W2 87,58m² AW01 Wand W3 26,06m2 AW01 Wand W4 87,58m2 AW01 293,18m² ZD01 warme Zwischendecke Decke Boden $293,18m^2$ EB01 erdanliegender Fußboden (<=1,5m unter


EG Rechteck

a = 9,34 b = 22,96
lichte Raumhöhe = 2,50 + obere Decke: 0,29 => 2,79m
BGF 214,45m² BRI 598,31m³

Wand W1 64,06m² AW03 Außenwand-Vollziegel 50cm
Wand W2 -26,06m² AW01 Außenwand-Naturstein
Wand W3 64,06m² AW01
Wand W4 26,06m² AW03 Außenwand-Vollziegel 50cm
Decke 214,45m² ZD01 warme Zwischendecke
Boden 214,45m² EB01 erdanliegender Fußboden (<=1,5m unter

EG Rechteck


a = 9,46 b = 11,91
lichte Raumhöhe = 2,50 + obere Decke: 0,29 => 2,79m
BGF 112,67m² BRI 314,35m³

Wand W1 33,23m² AW01 Außenwand-Naturstein
Wand W2 -26,39m² AW01
Wand W3 33,23m² AW01
Wand W4 26,39m² AW01
Decke 112,67m² ZD01 warme Zwischendecke
Boden 112,67m² EB01 erdanliegender Fußboden (<=1,5m unter

EG Rechteck einspringend


```
a = 6,00 b = 9,34 

lichte Raumhöhe = 2,50 + obere Decke: 0,30 \Rightarrow 2,80m 

BGF -56,04\text{m}^2 BRI -156,91\text{m}^3 

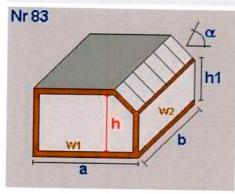
Wand W1 26,15\text{m}^2 AW01 Außenwand-Naturstein 

Wand W2 16,80\text{m}^2 AW01 

Wand W3 26,15\text{m}^2 AW01 

Wand W4 -16,80\text{m}^2 AW01 

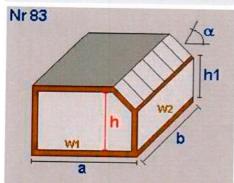
Decke 56,04\text{m}^2 DD01 Außendecke, Wärmestrom nach unten 


Boden -56,04\text{m}^2 EB01 erdanliegender Fußboden (<=1,5\text{m} unter
```

EG Summe

EG Bruttogrundfläche [m²]: EG Bruttorauminhalt [m³]:

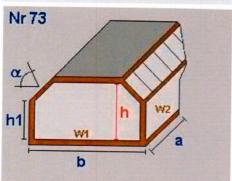
564,26 1 573,72


DG Dachkörper


```
Dachneigung a(°) 30,00
a = 9,34

h1 = 1,00
                b = 31,39
lichte Raumhöhe(h) = 2,50 + \text{obere Decke: } 0,22 \Rightarrow 2,72\text{m}
BGF
          293,18m² BRI
                           717,03m³
Dachfl.
          107,98m<sup>2</sup>
          199,67m²
Decke
Wand W1
           22,84m² AW02 Außenwand-Vollziegel 25cm
Wand W2
           31,39m2 AW02
Wand W3
           22,84m2 AW02
           85,38m<sup>2</sup> AW02
Wand W4
Dach
          107,98m² DS01 Dachschräge hinterlüftet
          199,67m2 AD01 Decke zu unkonditioniertem geschloss.
Decke
         -293,18m² ZD01 warme Zwischendecke
```

DG einseitiges Satteldach mit Decke


```
Dachneigung a(°) 30,00
a = 9,34

h1 = 1,00
               b = 22,96
lichte Raumhöhe (h) = 2,50 + \text{obere Decke: } 0,22 \Rightarrow 2,72\text{m}
BGF
          214,45m² BRI
                           524,47m3
Dachfl.
          78,98m²
Decke
          146,05m²
Wand W1
           22,84m² AW02 Außenwand-Vollziegel 25cm
Wand W2
           22,96m2 AW02
Wand W3
          -22,84m2 AW02
Wand W4
          62,45m2 AW02
          78,98m² DS01 Dachschräge hinterlüftet
Dach
Decke
         146,05 \mathrm{m}^2 AD01 Decke zu unkonditioniertem geschloss.
Boden
        -214,45m² ZD01 warme Zwischendecke
```


Geometrieausdruck Wohnhaus Nazarenko-Mitterndorf

Nebengiebel Satteldach mit Decke DG

Dachneigung a(°) 30,00 b = 9,46a = 11,91

h1= 1,00

lichte Raumhöhe(h)= 2,50 + obere Decke: 0,22 => 2,72m

112,67m² BRI 259,49m³

Dachfläche Dach-Anliegefl. 22,29m²

92,19m²

52,14m² Wand W1

20,61m² AW02 Außenwand-Vollziegel 25cm Wand W2 11,91m² AW02

Wand W3 -9,46m2 AW02

Wand W4 Dach

Boden

11,91m² AW02 92,19m² DS01 Dachschräge hinterlüftet Decke

52,14m² AD01 Decke zu unkonditioniertem geschloss. Boden -112,67m² ZD01 warme Zwischendecke

DG Summe

DG Bruttogrundfläche [m²]:

620,30

DG Bruttorauminhalt [m³]:

1 500,99

Deckenvolumen EB01

Fläche

 $564,26 \text{ m}^2 \times \text{Dicke 0,25 m} =$

138,24 m³

Deckenvolumen DD01

Fläche

 $56,04 \text{ m}^2 \times \text{Dicke } 0,30 \text{ m} =$

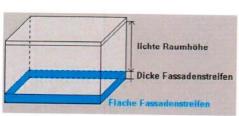
16,81 m³

Bruttorauminhalt [m3]:

155,06

Fassadenstreifen - Automatische Ermittlung

Wand


Dicke 0,245m 0,245m

137,58m 32,30m

Länge

33,71m² 7,91m²

Fläche

Gesamtsumme Bruttogeschoßfläche [m²]: Gesamtsumme Bruttorauminhalt [m3]:

1 184,56 3 229,77

Fenster und Türen Wohnhaus Nazarenko-Mitterndorf

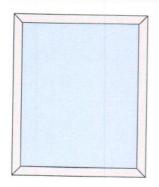
architectur+desig	ļľ
-------------------	----

Тур		Bautei	l An	z. Bezeichnung	Breite	Höhe	Fläche	Ug	Uf	PSI	Ag	Uw	AxUxf	g	fs
		- Landania			m	m	m²	W/m²K	W/m²K	W/mK	m²	W/m²K	W/K		
В		Prüfno	rmma	aß Typ 1 (T1)	1,23	1,48	1,82	1,30	1,65	0,060	1,41	1.54		0.61	
								(0)			1,41	1,01		0,01	
N															
B T1	EG	AW01	7	1,04 x 1,38	1,04	1,38	10,05	1,30	1,65	0,060	7,52	1,56	15,71	0.61	0.65
		The same of the sa	7				10,05				7,52		15,71		
0															
B T1	EG	AW01	1	2,05 x 1,10	2,05	1,10	2,26	1,30	1,65	0,060	1,70	1,58	3,57	0.61	0.65
B T1	EG	AW01	1	1,26 x 1,20	1,26	1,20	1,51	1,30	1,65	0,060	1,14	1,56	2,35	0,61	0,65
B T1	EG	AW01	1	2,00 x 2,12	2,00	2,12	4,24	1,30	1,65	0.060	3,45	1,53	6.47	0,61	0.65
B T1	EG	AW01	4	1,17 x 1,28	1,17	1,28	5,99	1,30	1.65	0,060	4,52	1,56	9,32	0,61	0,65
B T1	DG	AW02	2	1,20 x 1,30	1,20	1,30	3,12	1,30	1,65	0.060	2,19	1,65	5,16	0,61	
3 T1	DG	AW02	1	2,06 x 1,40	2,06	1.40	2.88	1,30	1,65	0,060	2,26	1,56	4.48		0,65
B T1	DG	AW02	1	1,40 x 2,13	1,40	2,13	2,98	1,30	1,65	0,060	2,29	1,59	4,40	0,61	0,65 0,65
			11				22,98	1,100,000	12 444		17,55	.,,,,,	36,08	0,01	0,00
S															
3 T1	EG	AVV01	1	1,90 x 2,03	1,90	2,03	3,86	1,30	1,65	0,060	3,10	1,54	5.93	0,61	0.65
3 T1	EG	AW01	1	1,26 x 1,20	1,26	1,20	1,51	1,30	1,65	0,060	1,14	1,56	2.35	0,61	0,65
3 T1	DG	AW02	1	1,40 x 2,13	1,40	2,13	2,98	1,30	1.65	0.060	2,29	1,59	4,73	0,61	0,65
3 T1	DG	AW02	4	0,70 x 1,40	0,70	1,40	3,92	1,30	1,65	0,060	2,68	1,63	6,38	G0000000	TO CHARLESTON
3 T1	DG	AW02	1	0,65 x 0,98	0,65	0,98	0,64	1,30	1.65	0.060	0,40	1,68	1,07	0,61	0,65
			8				12,91	1/16/680	(A 510000		9,61	1,00	20,46	0,01	0,00
W											0,01		20,40		
T1	EG	AW01	1	0,53 × 0,43	0,53	0,43	0,23	1,30	1,65	0,060	0,10	1,83	0,42	0,61	0.65
			1				0,23		17.7	2,000	0,10	1,00	0,42	0,01	0,00
Summe	9		27				40.47						477.0000		
E-0.0(110)	4)						46,17				34,78		72,67		

Ug... Uwert Glas Uf... Uwert Rahmen PSI... Linearer Korrekturkoeffizient Ag... Glasfläche g... Energiedurchlassgrad Verglasung fs... Verschattungsfaktor
Typ... Prüfnormmaßtyp B... Fenster gehör

B... Fenster gehört zum Bestand des Gebäudes

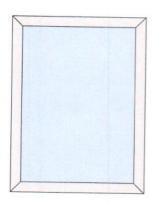
Rahmen Wohnhaus Nazarenko-Mitterndorf


Bezeichnung	Rb.re.	Rb.li.	Rb.o. m	Rb.u.	%	Stulp Anz.	Stb. Pfost	Pfb.	100	V-Sp. Anz.	Spb.	
Typ 1 (T1)	0,080	0,080	0,080	0,080	22	0.5100000000			,	1112		Kunststoff-Hohlprofil (58 < d < = 70
1,40 x 2,13	0,080	0,080	0,080	0,080	23		1	0,080				mm) Kunststoff-Hohlprofil (58 < d < = 70
0,70 x 1,40	0,080	0,080	0,080	0,080	32							mm) Kunststoff-Hohlprofil (58 < d < = 70 mm)
0,65 x 0,98	0,080	0,080	0,080	0,080	37							Kunststoff-Hohlprofil (58 < d <= 70 mm)
1,20 x 1,30	0,080	0,080	0,080	0,080	30		1	0,080				Kunststoff-Hohlprofil (58 < d < = 70 mm)
2,06 x 1,40	0,080	0,080	0,080	0,080	22		1	0,080				Kunststoff-Hohlprofil (58 < d < = 70 mm)
1,40 x 2,13	0,080	0,080	0,080	0,080	23		1	0,080				Kunststoff-Hohlprofil (58 < d < = 70 mm)
1,04 x 1,38	0,080	0,080	0,080	0,080	25							Kunststoff-Hohlprofil (58 < d < = 70 mm)
2,05 x 1,10	0,080	0,080	0,080	0,080	25		1	0,080				Kunststoff-Hohlprofil (58 < d < = 70 mm)
1,90 x 2,03	0,080	0,080	0,080	0,080	20		1	0,080				Kunststoff-Hohlprofil (58 < d < = 70 mm)
1,26 x 1,20	0,080	0,080	0,080	0,080	24							Kunststoff-Hohlprofil (58 < d < = 70 mm)
2,00 x 2,12	0,080	0,080	0,080	0,080	19		1	0,080				Kunststoff-Hohlprofil (58 < d < = 70
0,53 x 0,43	0,080	0,080	0,080	0,080	56							mm) Kunststoff-Hohlprofil (58 < d < = 70
1,17 x 1,28	0,080	0,080	0,080	0,080	24							mm) Kunststoff-Hohlprofil (58 $<$ d $<$ = 70 mm)

Rb.li,re,o.u Rahmenbreite links,rechts,oben, unten [m]
Stb. Stulpbreite [m] H-Sp. Anz Anzahl der horizontalen Sprossen
Pfb. Pfostenbreite [m] V-Sp. Anz Anzahl der vertikalen Sprossen Stb. Stulpbreite [m]
Pfb. Pfostenbreite [m]
Typ Prüfnormmaßtyp

Rahmenanteil des gesamten Fensters Spb. Sprossenbreite [m]

 Fenster
 Prüfnormmaß Typ 1 (T1)

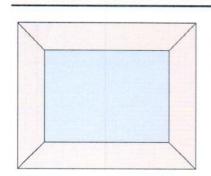

 Abmessung
 1,23 m x 1,48 m

 Uw-Wert
 1,54 W/m²K

 g-Wert
 0,61

Rahmenbreite links 0,08 m oben 0,08 m rechts 0,08 m unten 0,08 m

Glas	-	Ug	1,30 W/m²K
Rahmen	Kunststoff-Hohlprofil (58 < d < = 70 mm)	Uf	1,65 W/m²K
Psi (Abstandh.)	H 0	Psi	0,060 W/mK

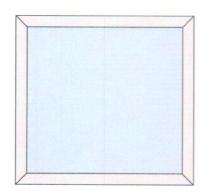

Fenster 1,04 x 1,38

Uw-Wert 1,56 W/m²K
g-Wert 0,61

Rahmenbreite links 0,08 m oben 0,08 m rechts 0,08 m unten 0,08 m

Glas	-	Ug	1,30 W/m²K
Rahmen	Kunststoff-Hohlprofil (58 < d < = 70 mm)	Uf	1,65 W/m²K
Psi (Abstandh.)	-11	Psi	0,060 W/mK

Fenster 0,53 x 0,43


Uw-Wert 1,83 W/m²K

g-Wert 0,61

Rahmenbreite links 0,08 m oben 0,08 m

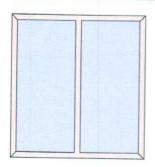
rechts 0,08 m unten 0,08 m

Glas	-	Ug	1,30 W/m²K
Rahmen	Kunststoff-Hohlprofil (58 < d < = 70 mm)	Uf	1,65 W/m²K
Psi (Abstandh.)	-	Psi	0,060 W/mK

Fenster 1,26 x 1,20

Uw-Wert 1,56 W/m²K

g-Wert 0,61


Rahmenbreite links 0,08 m oben 0,08 m

rechts 0,08 m unten 0,08 m

Glas	-	Ug	1,30 W/m²K
Rahmen	Kunststoff-Hohlprofil (58 < d < = 70 mm)	Uf	1,65 W/m²K
Psi (Abstandh.)	-	Psi	0,060 W/mK

architectur+design

Fenster 1,90 x 2,03

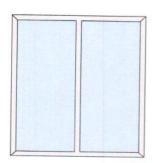
Uw-Wert

1,54 W/m2K

g-Wert

0,61

Rahmenbreite


links 0,08 m oben 0,08 m

rechts 0,08 m unten 0,08 m

Pfosten

Anzahl 1 Breite 0,08 m

Glas	-	Ug	1,30 W/m²K
Rahmen	Kunststoff-Hohlprofil (58 < d < = 70 mm)	Uf	1,65 W/m²K
Psi (Abstandh.)	-	Psi	0,060 W/mK

Fenster 2,00 x 2,12

Uw-Wert

1,53 W/m2K

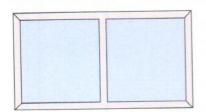
g-Wert

0,61

Rahmenbreite

0,08 m oben 0,08 m links

rechts 0,08 m unten 0,08 m


Pfosten

Anzahl 1

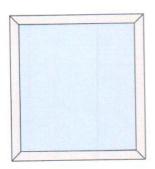
Breite 0,08 m

Glas	-	Ug	1,30 W/m²K
Rahmen	Kunststoff-Hohlprofil (58 < d < = 70 mm)	Uf	1,65 W/m²K
Psi (Abstandh.)	-	Psi	0,060 W/mK

2,05 x 1,10 Fenster

Uw-Wert 1,58 W/m2K

g-Wert


0,61

0,08 m oben 0,08 m links Rahmenbreite

rechts 0,08 m unten 0,08 m

Pfosten Breite 0,08 m Anzahl 1

Glas	-	Ug	1,30 W/m²K
Rahmen	Kunststoff-Hohlprofil (58 < d < = 70 mm)	Uf	1,65 W/m²K
Psi (Abstandh.)	-	Psi	0,060 W/mK

1,17 x 1,28 Fenster

Uw-Wert

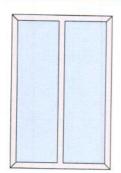
1,56 W/m2K

g-Wert

0,61

Rahmenbreite

links

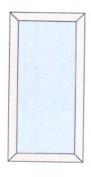

0,08 m oben 0,08 m

rechts 0,08 m unten 0,08 m

Glas	-	Ug	1,30 W/m²K
Rahmen	Kunststoff-Hohlprofil (58 < d < = 70 mm)	Uf	1,65 W/m ² K
Psi (Abstandh.)	-	Psi	0,060 W/mK

Fenster 1,40 x 2,13

Uw-Wert 1,59 W/m²K


g-Wert 0,61

Rahmenbreite links 0,08 m oben 0,08 m

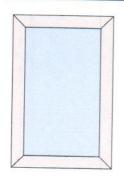
rechts 0,08 m unten 0,08 m

Pfosten Anzahl 1 Breite 0,08 m

Glas	-	Ug	1,30 W/m²K
Rahmen	Kunststoff-Hohlprofil (58 < d < = 70 mm)	Uf	1,65 W/m²K
Psi (Abstandh.)	-	Psi	0,060 W/mK

Fenster 0,70 x 1,40

Uw-Wert 1,63 W/m²K


g-Wert 0,61

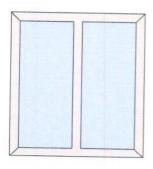
Rahmenbreite links 0,08 m oben 0,08 m

rechts 0,08 m unten 0,08 m

Glas		Ug	1,30 W/m²K
Rahmen	Kunststoff-Hohlprofil (58 < d < = 70 mm)	Uf	1,65 W/m²K
Psi (Abstandh.)	-	Psi	0,060 W/mK

Fenster 0,65 x 0,98

Uw-Wert 1,68 W/m²K


g-Wert 0,6

0.61

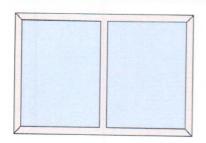
Rahmenbreite links 0,08 m oben 0,08 m

rechts 0,08 m unten 0,08 m

Glas	-	Ug	1,30 W/m²K
Rahmen	Kunststoff-Hohlprofil (58 < d < = 70 mm)	Uf	1,65 W/m²K
Psi (Abstandh.)	-	Psi	0,060 W/mK

Fenster 1,20 x 1,30

Uw-Wert 1,65 W/m²K
g-Wert 0,61


 Rahmenbreite
 links
 0,08 m
 oben
 0,08 m

 rechts
 0,08 m
 unten
 0,08 m

 Pfosten
 Anzahl
 1
 Breite
 0,08 m

Glas - U_g 1,30 W/m²K Rahmen Kunststoff-Hohlprofil (58 < d < = 70 U_f 1,65 W/m²K Psi (Abstandh.) - Psi 0,060 W/mK

Fenster 2,06 x 1,40

Uw-Wert

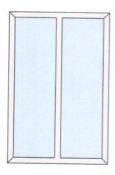
1,56 W/m2K

g-Wert

0,61

Rahmenbreite

links 0,08 m oben 0,08 m


rechts 0,08 m unten 0,08 m

Pfosten

Anzahl 1

Breite 0,08 m

Glas	7	Ug	1,30 W/m²K
Rahmen	Kunststoff-Hohlprofil (58 < d < = 70 mm)	Uf	1,65 W/m²K
Psi (Abstandh.)	-	Psi	0,060 W/mK

Fenster

1,40 x 2,13

Uw-Wert

1,59 W/m2K

g-Wert

0,61

Rahmenbreite

0,08 m oben 0,08 m

links

rechts 0,08 m unten 0,08 m

Pfosten

Anzahl 1

Breite 0.08 m

Glas	-	Ug	1,30 W/m²K
Rahmen	Kunststoff-Hohlprofil (58 < d < = 70 mm)	Uf	1,65 W/m²K
Psi (Abstandh.)	-	Psi	0,060 W/mK

Wärmedurchgangskoeffiizient (U-Wert), berechnet nach ÖNORM EN ISO 10077-1

RH-Eingabe Wohnhaus Nazarenko-Mitterndorf

Raumheizung

Allgemeine Daten

Wärmebereitstellung

gebäudezentral

Abgabe

Haupt Wärmeabgabe

Radiatoren, Einzelraumheizer

Systemtemperatur

Regelfähigkeit

Heizkörper-Regulierungsventile von Hand betätigt

Heizkostenabrechnung

Individuelle Wärmeverbrauchsermittlung und Heizkostenabrechnung (Fixwert)

Verteilung					Leitungslänge	en It. Defaultwerten
	gedämmt	Verhältnis Dämmstoffdicke zu Rohrdurchmesser	Außen- Durchmesser [mm]	Dämmung Armaturen	Leitungslänge [m]	konditioniert [%]
Verteilleitungen	Nein	Trom datom toooci	20,0	Nein	52,99	0
Steigleitungen	Nein		20,0	Nein	94,76	100
Anbindeleitunge	n Nein		20,0	Nein	663,35	

Speicher

kein Wärmespeicher vorhanden

Bereitstellung

Standort nicht konditionierter Bereich

Bereitstellungssystem

Flüssiger oder gasförmiger Brennstoff

Heizgerät Standardkessel

Energieträger

Heizöl Extra leicht

Heizkreis

gleitender Betrieb

Modulierung Baujahr Kessel

vor 1978

Korrekturwert des Wärmebereitstellungssystems

Nennwärmeleistung

101,05 kW Defaultwert

ohne Modulierungsfähigkeit

1,00% Fixwert

Kessel bei Volllast 100%

Kesselwirkungsgrad entsprechend Prüfbericht

 $\eta_{100\%}$

Kesselwirkungsgrad bei Betriebsbedingungen

83,0% Defaultwert

83,0% $\eta_{be.100\%} =$

Betriebsbereitschaftsverlust bei Prüfung

q bb.Pb

1,5% Defaultwert

Hilfsenergie - elektrische Leistung

Umwälzpumpe

96,91 W Defaultwert

Ölpumpe

2 020,92 W Defaultwert

^{*)} Wert pro Wärmebereitstellungseinheit (Wohnung bzw. Nutzungseinheit)

WWB-Eingabe Wohnhaus Nazarenko-Mitterndorf

Warmwasserbereitung

Allgemeine Daten

Wärmebereitstellung

gebäudezentral

kombiniert mit Raumheizung

Abgabe

Heizkostenabrechnung Individuelle Wärmeverbrauchsermittlung und Heizkostenabrechnung (Fixwert)

Wärmeverteilung mit Zirkulation

Leitungslängen It. Defaultwerten

	gedämmt	Verhältnis Dämmstoffdicke zu Rohrdurchmesser	Außen- Durchmesser [mm]		Leitungslänge [m]	kondition [%]	iert	
Verteilleitungen	Nein		20,0	Nein	19,32	0		
Steigleitungen	Nein		20,0	Nein	47,38	100		
Stichleitungen					189,53	Material	Stahl	2,42 W/m
Zirkulationsleitur	ng Rückla	uflänge				konditionier	16%1	
Verteilleitung	Nein		20,0	Nein	18.32	0		
Steigleitung	Nein		20,0	Nein	47,38	100		

Speicher

Art des Speichers

indirekt beheizter Speicher

Standort

nicht konditionierter Bereich

Baujahr

Vor 1978

Nennvolumen

16581

Defaultwert

Täglicher Bereitschaftsverlust Wärmespeicher

11,4 kWh/d q b.WS

Defaultwert

Hilfsenergie - elektrische Leistung

Zirkulationspumpe

37,42 W Defaultwert

Speicherladepumpe

116,02 W Defaultwert

^{*)} Wert pro Wärmebereitstellungseinheit (Wohnung bzw. Nutzungseinheit)

Gesamtenergieeffizienzfaktor gemäß ÖNORM H 5050-1 (Referenzklimabedingungen)

Wohnhaus	Nazarenko-Mitterndorf
----------	-----------------------

1 185	m²
3 230	m³
2 074	m²
0,64	1/m
1,56	m
	1 185 3 230 2 074 0,64 1,56

charakteristische Länge (lc)	1,56 m	
HEB _{RK}	324,6 kWh/m²a	(auf Basis HWB _{RK} 177,7 kWh/m²a)
HEB _{RK,26}	85,0 kWh/m²a	(auf Basis HWB RK,26 59,4 kWh/m²a)
HHSB	13,9 kWh/m²a	
HHSB ₂₆	13,9 kWh/m²a	
EEBRK	338,4 kWh/m²a	EEB RK = HEB RK + HHSB - PVE
EEB _{RK,26}	98,9 kWh/m²a	EEB RK,26 = HEB RK,26 + HHSB 26

Gesamtenergieeffizienzfaktor gemäß ÖNORM H 5050-1 (Standortklimabedingungen)

Wohnhaus Nazarenko-Mitterndorf

Brutto-Grundfläche	1 185	m²
Brutto-Volumen	3 230	m³
Gebäude-Hüllfläche	2 074	m²
Kompaktheit	0,64	1/m
charakteristische Länge (lc)	1,56	m

	0,04 1/111	
charakteristische Länge (lc)	1,56 m	
HEB _{SK}	352,6 kWh/m²a	(auf Basis HWB SK 197,9 kWh/m²a)
HEB _{SK,26}	92,8 kWh/m²a	(auf Basis HWB SK, 26 59,4 kWh/m²a)
HHSB	13,9 kWh/m²a	
HHSB ₂₆	13,9 kWh/m²a	
EEB _{SK}	366,5 kWh/m²a	EEB SK = HEB SK + HHSB - PVE
EEB SK,26	106,6 kWh/m²a	EEB SK,26 = HEB SK,26 + HHSB 26

XENON CONSULTING GmbH. BM. Ing. Zehetner Maria Ponsee 40 3454 Reidling 02276/2078 office@xenon.cc

ENERGIEAUSWEIS

Ist-Zustand

Wohnung Nazarenko-Mitterndorf

Dipl. Ing. Dr. Valerie Nazarenko Dorfstraße 9 3452 Mitterndorf

Energieausweis für Wohngebäude

BEZEICHNUNG

Wohnung Nazarenko-Mitterndorf

Umsetzungsstand Ist-Zustand

Gebäude(-teil)

Nutzungsprofil

Wohngebäude mit einer oder zwei Nutzungseinheiten

1900

Straße

Dorfstraße 9

Letzte Veränderung

Katastralgemeinde

Mitterndorf

PLZ/Ort

3451 Michelhausen

KG-Nr

20151

Grundstücksnr.

Seehöhe

195 m

SPEZIFISCHER REFERENZ-HEIZWÄRMEBEDARF, PRIMÄRENERGIEBEDARF, KOHLENDIOXIDEMISSIONEN und GESAMTENERGIEEFFIZIENZ-FAKTOR jeweils unter STANDORTKLIMA-(SK)-Bedingungen

	HWB Ref,SK PEB SK CO 2e					
A++	Keijok	. LD SK	CO _{2eq,SK}	f GEE,SK		
A+						
A						
В						
С						
D						
E						
F						
G	G	G	G	G		

HWB_{Ref}: Der Referenz-Heizwärmebedarf ist jene Wärmemenge, die in den Räume bereitgestellt werden muss, um diese auf einer normativ geforderten Raumtemperat ohne Berücksichtigung allfälliger Erträge aus Wärmerückgewinnung, zu halten.

WWWB: Der Warmwasserwärmebedarf ist in Abhängigkeit der Gebäudekategorie als flächenbezogener Defaultwert festgelegt.

HEB: Beim Heizenergiebedarf werden zusätzlich zum Heiz- und Warmwasser-wärmebedarf die Verluste des gebäudetechnischen Systems berücksichtigt, dazu zählen insbesondere die Verluste der Wärmebereitstellung, der Wärmeverteilung, der Wärmespeicherung und der Wärmeabgabe sowie allfälliger Hilfsenergie.

HHSB: Der Haushaltsstrombedarf ist als flächenbezogener Defaultwert festgelegt Er entspricht in etwa dem durchschnittlichen flächenbezogener Defaultwert festge eines österreichischen Haushalts.

RK: Das Referenzklima ist ein virtuelles Klima. Es dient zur Ermittlung von

EEB: Der Endenergiebedarf umfasst zusätzlich zum Heizenergiebedarf den Haushaltsstrombedarf, abzüglich allfälliger Endenergieerträge und zuzüglich eines dafür notwendigen Hilfsenergiebedarfs. Der Endenergiebedarf entspricht jener Energiemenge, die eingekauft werden muss (Lieferenergiebedarf).

foss: Der **Gesamtenergieeffizienz-Faktor** ist der Quotient aus einerseits dem Endenergiebedarf abzüglich allfälliger Endenergieerträge und zuzüglich des dafür notwendigen Hilfsenergiebedarfs und andererseits einem Referenz-Endenergiebedarf (Anforderung 2007).

PEB: Der Primärenergiebedarf ist der Endenergiebedarf einschließlich der Verluste in allen Vorketten. Der Primärenergiebedarf weist einen erneuerbaren (PEB em.) und einen nicht erneuerbaren (PEB nem.) Anteil auf.

CO2eq: Gesamte dem Endenergiebedarf zuzurechnenden äquivalenten Kohlendloxidemissionen (Treibhausgase), einschließlich jener für Vorketten

SK: Das Standortklima ist das reale Klima am Gebäudestandort. Dieses Klimamodell wurde auf Basis der Primärdaten (1970 bis 1999) der Zentralanstalt für Meteorologie und Geodynamik für die Jahre 1978 bis 2007 gegenüber der Vorfassung aktualisiert.

Alle Werte gelten unter der Annahme eines normierten Benutzerinnenverhaltens. Sie geben den Jahresbedarf pro Quadratmeter beheizter Brutto-Grundfläche an.

Dieser Energieausweis entspricht den Vorgaben der OIB-Richtlinie 6 "Energieeinsparung und Wärmeschutz" des Österreichischen Instituts für Bautechnik in Umsetzung der Richtlinie 2010/31/EU vom 19. Mai 2010 über die Gesamtenergieeffizienz von Gebäuden bzw. 2018/844/EU vom 30. Mai 2018 und des Energieausweis-Vorlage-Gesetzes (EAVG). Der Ermittlungszeitraum für die Konversionsfaktoren für Primärenergie und Kohlendioxidemissionen ist für Strom: 2018-01 – 2021-12, und es wurden übliche Allokationsregeln unterstellt.

Energieausweis für Wohngebäude

OIB OSTERREICHISCHES OIB-Richtlinie 6
INSTITUT FÜR BAUTECHNIK Ausgabe: Mai 2023

OFDALLE		A Company of
GEBAUD	EKENNDA	MATE

Brutto-Grundfläche (BGF)	142,0 m ²	Heiztage	365 d
Bezugsfläche (BF)	113,6 m²	Heizgradtage	3 668 Kd
Brutto-Volumen (V _B)	420,9 m³	Klimaregion	3 000 Ku
Gebäude-Hüllfläche (A)	430,1 m²	Norm-Außentemperatur	-14,3 °C
Kompaktheit (A/V)	1,02 1/m	Soll-Innentemperatur	22.0 °C
charakteristische Länge (Ic)	0,98 m	mittlerer U-Wert	0,95 W/m²K
Teil-BGF	- m²	LEK _T -Wert	95.20
Teil-BF	- m²	Bauweise	mittelschwer
Teil-V _B	- m³		

E	EA-Art:
Art der Lüftung	Fensterlüftung
Solarthermie	- m²
Photovoltaik	- kWp
Stromspeicher	
WW-WB-System (prima	ir)
WW-WB-System (sekur	ndär, opt.)
RH-WB-System (primär)
RH-WB-System (sekund	där, opt.)

WÄRME- UND ENERGIEBEDARF (Referenzklima)

Ergebnisse

Referenz-Heizwärmebedarf

 $HWB_{Ref,RK} = 257,4 \text{ kWh/m}^2\text{a}$ $EEB_{RK} = 532,6 \text{ kWh/m}^2\text{a}$

Endenergiebedarf Gesamtenergieeffizienz-Faktor

fgee,RK = 4,15

Heizwärmebedarf

HWB_{RK} = 257,4 kWh/m²a

Primärenergiebedarf n.em. für RH+WW

PEB_{HEB,n.em.,RK} = 617,7 kWh/m²a

WÄRME- UND ENERGIEBEDARF (Standortklima)

Referenz-Heizwärmebedarf	Q _{h,Ref,SK}	=	40 698	kWh/a	
Heizwärmebedarf	Qnsk			kWh/a	
Warmwasserwärmebedarf	Qtw			kWh/a	
Heizenergiebedarf	Q _{HEB.SK}			kWh/a	
Energieaufwandszahl Warmwasser	~IILB,SK		00 100	NVVII/a	
Energieaufwandszahl Raumheizung					
Energieaufwandszahl Heizen					
Haushaltsstrombedarf	QHHSB	=	1 972	kWh/a	
Endenergiebedarf	QEEB SK		82 139		
Primärenergiebedarf	QPEB.SK		100 648		
Primärenergiebedarf nicht erneuerbar	Q PEBn.em.,SK		97 044		
Primärenergiebedarf erneuerbar	QPEBernSK			kWh/a	
äquivalente Kohlendioxidemissionen	Q _{CO2eq.SK}		21 833	SSECTION STORY	
Gesamtenergieeffizienz-Faktor	00204,011		2,000	ngru	
Photovoltaik-Export	Q _{PVE,SK}	=		kWh/a	

	HWB Ref, SK	=	286,7	kWh/m²a
	HWB sk	=	286,7	kWh/m²a
	WWWB	=	7,7	kWh/m²a
	HEBSK	=	564,7	kWh/m²a
	e awz,ww	=	15,91	
	eawz,RH	=	1,54	
	e awz, H	=	1,92	
	HHSB	=	13,9	kWh/m²a
	EEBSK	=	578,6	kWh/m²a
	PEBsk	=	709,0	kWh/m²a
	PEB _{n.em.,SK}	=	683,6	kWh/m²a
	PEB _{ern.,SK}	=	25,4	kWh/m²a
	CO _{2eq,SK}	=	153,8	kg/m²a
	f _{GEE,SK}	=	4,12	
PV	E EXPORT, SK	=	-	kWh/m²a

ERSTELLT

Geschäftszahl

GWR-Zahl Ausstellungsdatum Gültigkeitsdatum

17.05.2025 16.05.2035 ErstellerIn

Unterschrift

XENON CONSULTING Gmb Maria Ponsee

archi a-3454 maria p

Die Energiekennzahlen dieses Energieausweises dienen ausschließlich der Information. Aufgrund der idealisierten Eing Insbesondere Nutzungseinheiten unterschiedlicher Lage können aus Gründen der Geometrie und der Lage hinsichtlich

Datenblatt GEQ Wohnung Nazarenko-Mitterndorf

Anzeige in Druckwerken und elektronischen Medien

HWB_{Ref,SK} 287 f_{GEE,SK} 4,12

Gebäudedaten

Brutto-Grundfläche BGF 142 m² Konditioniertes Brutto-Volumen 421 m³

430 m²

charakteristische Länge I_c 0,98 m Kompaktheit A B / VB 1,02 m⁻¹

Ermittlung der Eingabedaten

Geometrische Daten:

Gebäudehüllfläche AB

Planskizzen, 12.05.2025 Bauphysikalische Daten: Planskizzen, 12.05.2025

Haustechnik Daten:

Planskizzen, 12.05.2025

Haustechniksystem

Raumheizung:

Flüssiger oder gasförmiger Brennstoff (Heizöl Extra leicht)

Warmwasser

Kombiniert mit Raumheizung

Lüftuna:

Fensterlüftung, Nassraumlüfter vorhanden

Berechnungsgrundlagen

Der Energieausweis wurde mit folgenden ÖNORMen und Hilfsmitteln erstellt: GEQ von Zehentmayer Software GmbH - www.geq.at Bauteile nach ON EN ISO 6946 / Fenster nach ON EN ISO 10077-1 / Erdberührte Bauteile vereinfacht nach ON B 8110-6-1 / Unkonditionierte Gebäudeteile vereinfacht nach ON B 8110-6-1 / Wärmebrücken pauschal nach ON B 8110-6-1 / Verschattung vereinfacht nach ON B 8110-6-1

Verwendete Normen und Richtlinien:

ON B 8110-1 / ON B 8110-2 / ON B 8110-3 / ON B 8110-5 / ON B 8110-6-1 / ON H 5056-1 / ON EN ISO 13790 / ON EN ISO 13370 / ON EN ISO 6946 / ON EN ISO 10077-1 / OIB-Richtlinie 6 Ausgabe: Mai 2023

Anmerkung

Der Energieausweis dient zur Information über den energetischen Standard des Gebäudes. Der Berechnung liegen durchschnittliche Klimadaten, standardisierte interne Wärmegewinne sowie ein standardisiertes Nutzerverhalten zugrunde. Die errechneten Bedarfswerte können daher von den tatsächlichen Verbrauchswerten abweichen. Bei Mehrfamilienwohnhäusern ergeben sich je nach Lage der Wohnung im Gebäude unterschiedliche Energiekennzahlen. Für die exakte Auslegung der Heizungsanlage muss eine Berechnung der Heizlast gemäß ÖNORM H 7500 erstellt werden.

Empfehlungen zur Verbesserung Wohnung Nazarenko-Mitterndorf

Gebäudehülle

- Dämmung Außenwand
- Fenstertausch
- Dämmung Außendecke / erdberührter Boden

Haustechnik

- Dämmung Wärmeverteilleitungen
- Einbau eines Regelsystems zur Optimierung der Wärmeabgabe
- Heizungstausch (Nennwärmeleistung optimieren)
- Einbau von leistungsoptimierten und gesteuerten Heizungspumpen
- Einregulierung / hydraulischer Abgleich
- Einbau einer Wohnraumlüftung mit Wärmerückgewinnung
- Errichtung einer thermischen Solaranlage

Im Anhang des Energieausweises ist anzugeben (OIB 2023): Empfehlung von Maßnahme deren Implementierung den Endenergiebedarf des Gebäudes reduziert und technisch und wirtschaftlich zweckmaßig ist.

Heizlast Abschätzung Wohnung Nazarenko-Mitterndorf

Abschätzung der Gebäude-Heizlast auf Basis der Energieausweis-Berechnung

Berec	hnunc	shlatt
DCICC	HILLIC	Sulatt

Bauherr		Planer / Baufirma / Hausverwaltung XENON CONSULTING GmbH.						
Dipl. Ing. Dr. Valerie Nazarenko								
Dorfstraße 9		Maria Ponsee 40						
3452 Mitterndorf		3454 Reidling						
Tel.:		Tel.: 02276/2078						
Norm-Außentemperatur:	-14,3 °C	Standort: Michelhausen						
Berechnungs-Raumtemperatur:	22 °C	Brutto-Rauminhalt der						
Temperatur-Differenz:	36,3 K	beheizten Gebäudeteile:	420,90 m ³					
		Gebäudehüllfläche:	430 08 m²					

Bauteile	Fläche A [m²]	Wärmed koeffizient U [W/m² K]	Korr faktor f [1]	Leitwert
AD01 Decke zu unkonditioniertem geschloss. Dachraum AW02 Außenwand-Vollziegel 25cm	141,96	0,286	0,90	36,51
FE/TÜ Fenster u. Türen	93,35 9,68	1,786 1,588	1,00	166,70 15,37
EB01 erdanliegender Fußboden (<=1,5m unter Erdreich)	141,96	1,052	0,70	104,53
IW01 Wand zu sonstigem Pufferraum Summe OBEN-Bauteile	43,14 141,96	1,538	0,70	46,46
Summe UNTEN-Bauteile	141,96			
Summe Außenwandflächen	93,35			
Summe Innenwandflächen	43,14			
Fensteranteil in Außenwänden 9,4 %	9,68			
Summe	(max 1) max 100		[W/K]	370
Wärmebrücken (vereinfacht)			[W/K]	37
Transmissions - Leitwert			[W/K]	406,52
Lüftungs - Leitwert			[W/K]	28,11
Gebäude-Heizlast Abschätzung	[kW]	15,8		
Flächenbez. Heizlast Abschätzung (142 m	2)	[W/r	m² BGF]	111,14

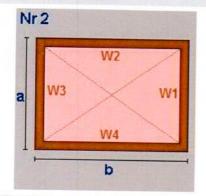
Die Gebäude-Heizlast Abschätzung dient als Anhaltspunkt für die Auslegung des Wärmeerzeugers. Für die Dimensionierung ist eine Heizlast-Berechnung gemäß ÖNORM H 7500 erforderlich.

Die erforderliche Leistung für die Warmwasserbereitung ist unberücksichtigt.

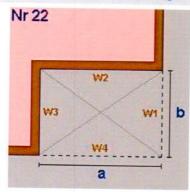
Bauteile

Wohnung Nazarenko-Mitterndorf

architectur+design


EBO4	VINCES IN COLUMN								CANTINA	4.500	3.11
EB01 erdanlieg	gender	Fußbode	n (<=1	,5m unt	er Erc	dreich)			And a second		
Fliesen						von Innen	nach Au	ißen	Dicke	λ	d/ λ
1.202.06 Estrichbeton Dämmung Massivbeton					Danie	B B B			0,0150 0,0500 0,0300 0,1500	1,000 1,480 0,045 2,300	0,015 0,034 0,667 0,065
AW02 Außenwa	and Vol	Izional 26			rse+	-Rsi = 0,17		Dicke gesam	0,2450	U-Wert	1,05
bestehend	ariu-voi	iziegei 25	ocm								
Innenputz						von Innen	nach Au	ßen	Dicke	λ	d/ λ
Vollziegelmauerwerk Aussenputz						B B B			0,0150 0,2500 0,0250	1,000 0,700 1,400	0,015 0,357 0.018
					Rse+	Rsi = 0,17		Dicke gesamt	0.2900	U-Wert	1,79
IW01 Wand zu	sonstig	em Puffe	erraum	1				- rene gooding	0,2000	O-Well	1,79
bestehend						von Innen r	nach Auf	Ren	Dicke	λ	d/λ
Innenputz Vollziegelmauerwerk Aussenputz					Rsa+	B B B Rsi = 0,26			0,0150 0,2500 0,0250	1,000 0,700 1,400	0,015 0,357 0,018
AD01 Decke zu	unkon	ditioniert	em de	echlose	Dook	10,20		Dicke gesamt	0,2900	U-Wert	1,54
pestehend		antionion to	ciii ge	50111055	. Daci						
Zangen dazw.						von Außen			Dicke	λ	d/ λ
Luftschicht						В	10,0		0,0400	0,120	0,033
Zangen dazw.						B B	90,0			0,750	0,048
Mineralwolle						В	10,0 90,0		0,1400	0,120	0,117
Holzwolleleichtbauplatt	e zemer	tgebunder	1			В	90,0	%	0.0050	0,040	3,150
nnenputz		U. The Control of the Control				В			0,0250	0,100	0,250
	RTo	3,5585	RTu	3,4399	RT	3,4992		Dicke goosmt		1,000	0,015
				1		0,1002		Dicke gesamt Rse		U-Wert	0,29
								1736	11/2	1,4	

Einheiten: Dicke [m], Achsabstand [m], Breite [m], U-Wert [W/m 2 K]. Dichte [kg/m 3], λ [W/mK] *... Schicht zählt nicht zum U-Wert F... enthält Flächenheizung B... Bestandsschicht RTu ... unterer Grenzwert RTo ... oberer Grenzwert laut ÖNORM EN ISO 6946



Geometrieausdruck Wohnung Nazarenko-Mitterndorf

EG Grundform

EG Rechteck einspringend am Eck

	b = 2,50 $aumh\ddot{o}he = 2,50 + obere Decke: 0,22 => 2,72m$ $-5,00m^2 BRI -13,60m^3$
Wand W1 Wand W2 Wand W3 Wand W4	-6,80m ² AW02 Außenwand-Vollziegel 25cm 5,44m ² AW02 6,80m ² AW02
Decke Boden	-5,44m ² AW02 -5,00m ² AD01 Decke zu unkonditioniertem geschloss. -5,00m ² EB01 erdanliegender Fußboden (<=1,5m unter

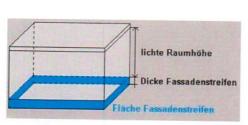
EG Summe

EG Bruttogrundfläche [m²]: EG Bruttorauminhalt [m³]:

Bruttorauminhalt [m3]:

141,96 386,12

34,78


Deckenvolumen EB01

Fläche

 $141,96 \text{ m}^2 \times \text{Dicke } 0,25 \text{ m} =$

34,78 m³

Fassadenstreifen - Automatische Ermittlung

Wand I		Boden	Dicke	Länge	Fläche		
AW02	-	EB01	0,245m	34,75m	8,51m²		
IW01	-	EB01	0,245m	14,55m	3,56m²		

architectur+design

Gesamtsumme Bruttogeschoßfläche [m²]: Gesamtsumme Bruttorauminhalt [m³]:

141,96 420,90

Fenster und Türen Wohnung Nazarenko-Mitterndorf

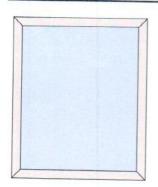
architectur+des	ian
architectura	13411

Тур		Bauteil	Anz	Bezeichnung	Breite m	Höhe m	Fläche m²	Ug W/m²K	Uf W/m²K	PSI W/mK	Ag m²	Uw W/m²K	AxUxf W/K	g	fs
3		Prüfnori	nma	ß Typ 1 (T1)	1,23	1,48	1,82	1,30	1,65	0,060	1,41	1,54		0,61	
											1,41				
0													(C. 1)		
3 T1	EG	AW02	1	1,13 x 1,24	1,13	1,24	1,40	1,30	1,65	0,060	1,05	1,56	2,19	0,61	0,65
			1				1,40				1,05		2,19		
S					P. S.								WAY S		
3 T1	EG	AW02	4	1,44 x 1,07	1,44	1,07	6,16	1,30	1,65	0,060	4,66	1,56	9,59	0,61	0,65
3	EG	AW02	1	0.90×2.00	0,90	2,00	1,80					1,67	3,01		
			5				7,96				4,66		12,60		
W															
3 T1	EG	AW02	1	0,50 x 0,63	0,50	0,63	0,32	1,30	1,65	0,060	0,16	1,78	0,56	0,61	0,65
1				0,32				0,16		0,56	According to				
Sumn	ne		7				9,68				5,87		15,35		

Ug... Uwert Glas Uf... Uwert Rahmen PSI... Linearer Korrekturkoeffizient Ag... Glasfläche g... Energiedurchlassgrad Verglasung fs... Verschattungsfaktor
Typ... Prüfnormmaßtyp B... Fenster gehör

B... Fenster gehört zum Bestand des Gebäudes

Rahmen Wohnung Nazarenko-Mitterndorf

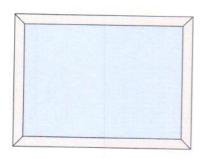

Bezeichnung	Rb.re.	Rb.li. m	Rb.o. m	Rb.u.	%	Stulp Anz.	Stb. Pfost m Anz.	Pfb.	H-Sp.	V-Sp.	Spb.	
Typ 1 (T1)	0,080	0,080	0,080	0,080	22			100	7 (112	7 1112.	1111	Kunststoff-Hohlprofil (58 < d < = 7
1,44 x 1,07	0,080	0,080	0,080	0,080	24							mm) Kunststoff-Hohlprofil (58 < d < = 7
0,50 x 0,63	0,080	0,080	0,080	0,080	49							mm) Kunststoff-Hohlprofil (58 < d < = 7
1,13 x 1,24	0,080	0,080	0,080	0,080	25							mm) Kunststoff-Hohlprofil (58 < d <= 7) mm)

Rb.li,re,o,u Rahmenbreite links,rechts,oben, unten [m]
Stb. Stulpbreite [m] H-Sp. Anz Anzahl der horizontalen Sprossen
Pfb. Pfostenbreite [m] V-Sp. Anz Anzahl der vertikalen Sprossen
Typ Prüfnormmaßtyp

% Rahmenanteii des g Spb. Sprossenbreite [m] Rahmenanteil des gesamten Fensters

architectur+design

 Fenster
 Prüfnormmaß Typ 1 (T1)

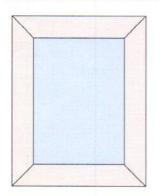

 Abmessung
 1,23 m x 1,48 m

 Uw-Wert
 1,54 W/m²K

 g-Wert
 0,61

Rahmenbreite links 0,08 m oben 0,08 m rechts 0,08 m unten 0,08 m

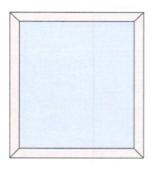
Glas	-	Ug	1,30 W/m²K
Rahmen	Kunststoff-Hohlprofil (58 < d < = 70 mm)	Uf	1,65 W/m²K
Psi (Abstandh.)	-	Psi	0,060 W/mK


Fenster 1,44 x 1,07

Uw-Wert 1,56 W/m²K
g-Wert 0,61

Rahmenbreite links 0,08 m oben 0,08 m rechts 0,08 m unten 0,08 m

Glas		Ug	1,30 W/m²K
Rahmen	Kunststoff-Hohlprofil (58 < d < = 70 mm)	Uf	1,65 W/m²K
Psi (Abstandh.)	-	Psi	0,060 W/mK



Fenster 0,50 x 0,63

Uw-Wert 1,78 W/m²K
g-Wert 0,61

Rahmenbreite links 0,08 m oben 0,08 m rechts 0,08 m unten 0,08 m

Glas	-	Ug	1,30 W/m²K
Rahmen	Kunststoff-Hohlprofil (58 < d < = 70 mm)	Uf	1,65 W/m²K
Psi (Abstandh.)	-	Psi	0,060 W/mK

Fenster 1,13 x 1,24

Uw-Wert 1,56 W/m²K
g-Wert 0,61

Rahmenbreite links 0,08 m oben 0,08 m rechts 0,08 m unten 0,08 m

Glas	-	Ug	1,30 W/m²K
Rahmen	Kunststoff-Hohlprofil (58 < d < = 70 mm)	Uf	1,65 W/m²K
Psi (Abstandh.)	-	Psi	0,060 W/mK

Wärmedurchgangskoeffiizient (U-Wert), berechnet nach ÖNORM EN ISO 10077-1

RH-Eingabe Wohnung Nazarenko-Mitterndorf

Raumheizung

Allgemeine Daten

Wärmebereitstellung

gebäudezentral

Abgabe

Haupt Wärmeabgabe

Radiatoren, Einzelraumheizer

Systemtemperatur

Regelfähigkeit

Heizkörper-Regulierungsventile von Hand betätigt

Heizkostenabrechnung

Individuelle Wärmeverbrauchsermittlung und Heizkostenabrechnung (Fixwert)

Verteilung					Leitungslänge	en It. Defaultwerten
	gedämmt	Verhältnis Dämmstoffdicke zu Rohrdurchmesser	Außen- Durchmesser	Dämmung Armaturen	Leitungslänge [m]	konditioniert [%]
Verteilleitungen		romadiciniesse:	[mm] 20,0	Nein	12,95	0
Steigleitungen	Nein		20,0	Nein	11,36	100
Anbindeleitunger	1 Nein		20,0	Nein	79,49	

Speicher

kein Wärmespeicher vorhanden

Bereitstellung

Standort nicht konditionierter Bereich

Bereitstellungssystem Flüssiger oder gasförmiger Brennstoff

Heizgerät Standardkessel

Energieträger

Heizöl Extra leicht

Heizkreis

gleitender Betrieb

Modulierung Baujahr Kessel

ohne Modulierungsfähigkeit vor 1978

Nennwärmeleistung

17,66 kW

Defaultwert

Korrekturwert des Wärmebereitstellungssystems

Kessel bei Volllast 100%

2.00% Fixwert

 $\eta_{100\%}$

81,5% Defaultwert

Kesselwirkungsgrad entsprechend Prüfbericht Kesselwirkungsgrad bei Betriebsbedingungen

81.5% $\eta_{\,\text{be.100\%}}$

Umwälzpumpe

Betriebsbereitschaftsverlust bei Prüfung

2,1% Defaultwert q bb.Pb

Hilfsenergie - elektrische Leistung

Ölpumpe

353,20 W Defaultwert

47,70 W Defaultwert

^{*)} Wert pro Wärmebereitstellungseinheit (Wohnung bzw. Nutzungseinheit)

WWB-Eingabe Wohnung Nazarenko-Mitterndorf

Warmwasserbereitung

Allgemeine Daten

Wärmebereitstellung

gebäudezentral

kombiniert mit Raumheizung

Abgabe

Heizkostenabrechnung Individuelle Wärmeverbrauchsermittlung und Heizkostenabrechnung (Fixwert)

<u>Wärmeverteili</u>		<u> </u>		Leitungslängen lt. Defaultwerte					
	gedämmt	Verhältnis Dämmstoffdicke zu Rohrdurchmesser	Außen- Durchmesser [mm]	Dämmung Armaturen	Leitungslänge				
Verteilleitungen	Nein		20,0	Nein	8.48	0			
Steigleitungen	Nein		20,0	Nein	5,68	100			
Stichleitungen					22,71	Material S	Stahl 2,42 W/n		
Zirkulationsleitur	ng Rücklaı	uflänge			k	conditioniert [0/_1		
Verteilleitung	Nein		20.0	Nein	7.48	0	70]		
Steigleitung	Nein		20,0	Nein	5.68	100			

Speicher

Art des Speichers

indirekt beheizter Speicher

Standort

nicht konditionierter Bereich

Baujahr

Vor 1978

Nennvolumen

1991

Defaultwert

Täglicher Bereitschaftsverlust Wärmespeicher

 $q_{b,WS} = 4,21 \text{ kWh/d}$

Defaultwert

Hilfsenergie - elektrische Leistung

Zirkulationspumpe

28,25 W Defaultwert

Speicherladepumpe

52,63 W Defaultwert

^{*)} Wert pro Wärmebereitstellungseinheit (Wohnung bzw. Nutzungseinheit)

Gesamtenergieeffizienzfaktor gemäß ÖNORM H 5050-1 (Referenzklimabedingungen)

Wohnung	Nazarenko-Mitterndorf
---------	-----------------------

Brutto-Grundfläche	142	m²	
Brutto-Volumen	421	m³	
Gebäude-Hüllfläche	430		
Kompaktheit	1,02		
charakteristische Länge (lc)	0,98	m	

Charakteristische Lange (Ic)	0,98 m	
HEB _{RK} ,26	518,7 kWh/m²a 114,3 kWh/m²a	(auf Basis HWB _{RK} 257,4 kWh/m²a) (auf Basis HWB _{RK,26} 79,1 kWh/m²a)
HHSB HHSB ₂₆	13,9 kWh/m²a 13,9 kWh/m²a	
EEB _{RK} EEB _{RK,26}	532,6 kWh/m²a 128,2 kWh/m²a	EEB RK = HEB RK + HHSB - PVE EEB RK,26 = HEB RK,26 + HHSB 26

Gesamtenergieeffizienzfaktor gemäß ÖNORM H 5050-1 (Standortklimabedingungen)

Wohnung N	Nazarenko-Mitterndorf
-----------	-----------------------

Brutto-Grundfläche	142	m²
Brutto-Volumen	421	
Gebäude-Hüllfläche	430	m²
Kompaktheit	1,02	1/m
charakteristische Länge (lc)	0,98	m

charakteristische Länge (lc)	0,98 m
HEB _{SK}	564,7 kWh/m²a (auf Basis HWB sk 286,7 kWh/m²a)
HEB _{SK,26}	126,7 kWh/m²a (auf Basis HWB SK,26 79,1 kWh/m²a)
HHSB	13,9 kWh/m²a
HHSB ₂₆	13,9 kWh/m²a
EEB _{SK}	578,6 kWh/m²a EEB SK = HEB SK + HHSB - PVE
EEB SK,26	140,6 kWh/m²a
f gee,sk	4,12 $f_{GEE,SK} = EEB_{SK} / EEB_{SK,26}$