AU-HOF Consulting Bauplanungs- u. BeratungsGmbH DI Marco Danzinger Operngasse 6/3/5 1010 Wien

office@au-hof.at

ENERGIEAUSWEIS

Einfamilienhaus

EFH Langwiesgasse 12, 1140 Wien - Bestand ... 08052014

Christian Mondl Langwiesgasse 12 1140 Wien-Penzing

Energieausweis für Wohngebäude

OIB Richtlinie 6 Ausgabe Oktober 2011

EFH Langwiesgasse 12, 1140 Wien - Bestand ... 08052014 BEZEICHNUNG

Gebäudeteil KG bis EG

Nutzungsprofil Einfamilienhaus

Straße Langwiesgasse 12

1140 Wien PLZ/Ort

Grundstücksnr. 370/25

1858-1864-1865 Baujahr

WDVS & Fenstertausch 2005

Katastralgemeinde Penzing

1210 KG-Nr.

Letzte Veränderung

171 m Seehöhe

PEZIFISCHER HEIZWÄRMEBEDARF, PRIMÄRENER BESAMTENERGIEEFFIZIENZ-FAKTOR (STANDORTK	(LIMA) HWB _{SK}	PEB sk	CO ₂ sK	f _{GEE}
A++				
A+				
A				
В				
С				C
D	D	D	D	
E				
F				
G				

HWB: Der Heizwärmebedarf beschreibt jene Wärmernenge, welche den Räumen rechnerisch zur Beheizung zugeführt werden muss.

WWWB: Der Warmwasserwärmebedarf ist als flächenbezogener Defaultwert lestgelegt. Er entspricht ca. einem Liter Wasser je Quadratmeter Brutto-Grundfläche, welcher um ca. 30°C (also beispielsweise von 8°C auf 38°C) erwärmt wird.

HEB: Beim Heizenergiebedarf werden zusätzlich zum Nutzenergiebedarf die Verluste der Haustechnik im Gebäude berücksichtigt. Dazu zählen beispielsweise die Verluste des Heizkessels, der Energiebedarf von Umwälzpumpen etc.

HHSB: Der Haushaltsstrombedarf ist als flächenbezogener Defaultwert festgelegt. Er entspricht ca, dem durchschnittlichen flächenbezogenen Stromverbrauch in einem surchschnittlichen österreichischen Haushalt.

EEB: Beim Endenerglebedarf wird zusätzlich zum Heizenergiebedarf der Haushaltsstrombedarf berücksichtigt. Der Endenergiebedarf entspricht jener Energiemenge, die eingekauft werden muss.

PEB: Der Primärenergiebedarf schließt die gesamte Energie für den Bedarf im Gebäude einschließlich aller Vorketten mit ein. Dieser weist einen erneuerbaren und einen nicht erneuerbaren Anteil auf. Der Ermittlungszeitraum für die Konversionsfaktoren ist 2004 - 2008.

CO₂: Gesamte dem Endenergiebedarf zuzurschnenden Kohlendioxidemissionen, einschließlich jener für Transport und Erzeugung sowie aller Verluste. Zu deren Berechnung wurden übliche Allokationsregeln unterstellt.

fggg : Der Gesamtenergieeffizienz-Faktor ist der Quotient aus dem Endenergiebedarf und einem Referenz-Endenergiebedarf (Anforderung 2007).

Alle Werte gelten unter der Annahme eines normierten Benutzerverhaltens. Sie geben den Jahresbedarf pro Quadratmeter beheizter Brutto-Grundfläche an.

Dieser Energieausweis entspricht den Vorgaben der OIB-Richtlinie 6 "Energieeinsparung und Wärmeschutz" des Österreichischen Instituts für Bautechnik in Umsetzung der Richtlinie 2010/31/EU über die Gesamtenergieeffizienz von Gebäuden und des Energieausweis-Vorlage-Gesetzes (EAVG).

Energieausweis für Wohngebäude

OIB Richtlinle 6 Ausgabe Oktober 2011

1,36

GEBÄUDEKENNDATEN					
Brutto-Grundfläche	206 m²	Klimaregion	N	mittlerer U-Wert	0,62 W/m²K
Bezugs-Grundfläche	165 m²	Heiztage	247 d	Bauweise	schwer
Brutto-Volumen	642 m³	Heizgradtage	3460 Kd	Art der Lüftung	Fensterlüftung
Gebäude-Hüllfläche	471 m²	Norm-Außentemperatur	-11,4 °C	Sommertauglichkeit	
Kompaktheit (A/V)	0,73 1/m	Soll-Innentemperatur	20 °C	LEK _T -Wert	55,5

WÄRME- UND ENERGIEBEDARF

charakteristische Länge

	Referenzklima	Stando	ortklima
	spezifisch	zonenbezogen [kWh/a]	spezifisch [kWh/m²a]
HWB	108,1 kWh/m²a	22 782	110,7
WWWB		2 629	12,8
HTEBRH		5 603	27,2
HTEBww		2 977	14,5
HTEB		8 854	43,0
HEB		34 266	166,5
HHSB		3 381	16,4
EEB		37 647	182,9
PEB		49 346	239,7
PEBn.em.		47 629	231,4
PEB _{em.}		1 718	8,3
CO ₂		9 546 kg/a	46,4 kg/m²a
fgee		1,	51

ΕR	ST	F	п	T

GWR-Zahl

Erstellerin

AU-HOF Consulting Bauplanungs- u. BeratungsGmbH.

Ausstellungsdatum 09.05.2014 Opemgasse 6/3/5

1010 Wien

Gültigkeitsdatum 08.05.2024

Unterschrift WISTAWEL & PARTNER ZT ARCHITEKT DIPL-II

MICHAEL WISTAWEL A-2340 Mödling, Neudorier Straße 42 Tel/Fax: +43 (0) 2236 - 22495

Mobil: +43 (0) 676-534 70 08 E-Mall; buero.wistawel@tele2.at

Die Energiekennzahlen dieses Energieausweises dienen ausschließlich der Information. Aufgrund der idealisierten Eingabeparameter können bei tatsächlicher Nutzung erhebliche Abweichungen auftreten. Insbesondere Nutzungseinheiten unterschiedlicher Lage können aus Gründen der Geometrie und Lage hinsichtlich Ihrer Energiekennzahlen von den hier angegebenen abweichen.

AU-HOF Consulting
Bauplanungs- und Beratungsges.m.b.H
1010 Wien, Operngasse 6/3/5
TELEFON: +43 (01) 512 91 62
FAX: +43 (01) 25 33 03 37 108
e-mail: office@au-hof.at
consulting Handelsgericht Wien FN 347444y

www.au-hof.at III Operngasse 6/3/5, 1010 Wien

Datenblatt GEQ

EFH Langwiesgasse 12, 1140 Wien - Bestand ... 08052014

Anzeige in Druckwerken und elektronischen Medien

Ergebnisse bezogen auf Wien

fgee 1.51

Gebäudedaten

Brutto-Grundfläche BGF 206 m² charakteristische Länge lc 1,36 m Konditioniertes Brutto-Volumen 0.73 m⁻¹ 642 m³ Kompaktheit AB / VB

Gebäudehüllfläche AB Ermittlung der Eingabedaten

Geometrische Daten: lt. Einreichplan Zubau Veranda, ca. 1960-65 lt. Einreichplan Zubau Veranda, ca. 1960-65 Bauphysikalische Daten:

471 m²

lt. Info Eigentümer, Haustechnik Daten:

Ergebnisse am tatsächlichen Standort: Wien

Transmissionswärmeverluste Q _T		28 164	kWh/a
Lüftungswärmeverluste Q _V	Luftwechselzahl: 0,4	5 596	kWh/a
Solare Wärmegewinne passiv η x Q _s		6 448	kWh/a
Innere Wärmegewinne passiv η x Q _i	schwere Bauweise	4 286	kWh/a
Heizwärmebedarf Q _b		22 782	kWh/a

Ergebnisse Referenzklima

Transmissionswärmeverluste Q _T	27 294	kWh/a
Lüftungswärmeverluste Q _V	5 423	kWh/a
Solare Wärmegewinne passiv η x Q _s	6 277	kWh/a
Innere Wärmegewinne passiv η x Q ₁	4 183	kWh/a
Heizwärmebedarf Q _h	22 257	kWh/a

Haustechniksystem

Raumheizung: Flüssiger oder gasförmiger Brennstoff (Gas)

Warmwasser: Kombiniert mit Raumheizung

Lüftung: Fensterlüftung

Berechnungsgrundlagen

Der Energieauswels wurde mit folgenden ÖNORMen und Hilfsmitteln erstellt: GEQ von Zehentmayer Software GmbH www.geq.at Bauteile nach ON EN ISO 6946 / Fenster nach ON EN ISO 10077-1 / Erdberührte Bauteile detailliert nach ON EN ISO 13370 / Unkonditionierte Gebäudeteile detailliert nach ON EN ISO 13789 / Wärmebrücken pauschal nach ON B 8110-6 / Verschattung vereinfacht nach ON B 8110-6

B 8110-1 / ON B 8110-2 / ON B 8110-3 / ON B 8110-5 / ON B 8110-6 / ON H 5055 / ON H 5056 / ON EN ISO 13790 / ON EN ISO 13370 / ON EN ISO 6946 / ON EN ISO 10077-1 / ON EN 12831 / OIB Richtlinie 6 / ON EN ISO 13789 / ON EN ISO 13370

Der Energieausweis dient zur Information über den energetischen Standard des Gebäudes. Der Berechnung liegen durchschnittliche Klimadaten, andardisierte interne Warmegewinne sowie ein standardisiertes Nutzerverhalten zugrunde. Die errechneten Bedarfswerte können daher von den allach ichen Verbrauchswerten abweichen. Bei Mehrfamilienwohnhäusern ergeben sich je nach Lage der Wohnung im Gebäude unterschiedliche Ebergingerunzahlen. Für die exakte Auslegung der Heizungsanlage muss eine Berechnung der Heizlast gemäß ÖNORM H 7500 erstellt werden.

v2014.030305 REPDBL2 o11 - Wien

Projektnr. 2849

09.05.2014

AU-HOF Consulting www.au-hof.at III Operngasse 6/3/5, 1010 Wien

projektanmerkungen EFH Langwiesgasse 12, 1140 Wien - Bestand ... 08052014

Allgemein

Die OIB-6 Richtlinie (2.6 Leitfaden) schreibt eine Einteilung nach seperat zu betrachtenden Zonen bei folgenden Kriterien vor:

- ... unterschiedl. Nutzung (Wohnung, Büro, Geschäft, Schule, etc.)
- ... unterschiedl. Bauweise (leicht, mittelschwer, schwer, sehr schwer)
- ... unterschiedl. Nutzungsbedingungen (Luftwechsel, Nutzungszeiten, etc.)
- ... Temp. Differenz in nebeneinander liegenden Räumen > 4° Kelvin
- ... Zonen, die von unterschiedlichen Systemen (Raumheizung, Warmwasser, Kühlung, Beleuchtung) versorgt werden.
- -- Beim gegenständlichen Objekt kann in folgende Nutzungszonen unterteilt werden:
- ... Nutzung Bestand, KG EG: "Einfamilienhaus Bestand", Bauweise: "schwer", Raumheizung: Gas-Brennwertkessel, Warmwasser: Gas-Brennwertkessel

Der Energieausweis kann entweder je Nutzungseinheit (je Wohnung) oder für das gesamte Gebäude (unter Berücksichtigung der o.a. Zonierungskriterien) gerechnet werden. Diese Wahl / Definition erfolgt vor Auftragserteilung gemeinsam mit dem Bauherrn / Auftraggeber. In der Regel wird eine gesamtheitliche Berechnung für EIN Objekt durchgeführt. Eine Berechnung für das Gesamtobjekt ist kosten- u. aufwandsmässig günstiger, besondere Eigenheiten (zB exponierte Lage) und die thermischen Qualitäten EINER speziellen Wohnung werden im Energieausweis eines Gebäudes allerdings nicht ausgewiesen.

Die im vorliegenden Energieausweis angegebenen Werte wie Energiekennzahl, Endenergiebedarf, usw. beziehen sich auf die It. Norm vorgegebenen Temperaturen für konditionierte Räume.

Diese errrechneten Werte (Soll-Zustand) sind jedoch vom tatsächlichem Nutzerverhalten (Ist-Zustand) - (zB.: gewünschte Innentemperatur, Lüftungsverhalten, dauerhaft offenstehende Fenster- bzw. Türflügel) abhängig.

Abweichungen bei der EKZ zwischen IST- und SOLL-Zustand sind dadurch möglich.

Der Energieausweis bildet den Heizwärmebedarf (HWB) und Endenergiebedarf unter bestimmten standardisierten Bedingungen ab. Dies soll den Zweck erfüllen, die Vergleichbarkeit der Energieffizienz und des Dämmstandards unterschiedlicher Objekte gewährleisten zu können.

Der Energieausweis soll als Instrument zur Bewusstseinsbildung und als Entscheidungshilfe für zukünftige, interessierte Mieter bzw. Käufer dienen.

Alle Aussagen und Feststellungen in der vorliegenden Energieausweisberechnung entsprechen dem Wissensstand zum Zeitpunkt der Erstellung und können je nach Benutzerverhalten unterschiedlich positiv oder negativ beeinflusst werden. Die Feststellungen im Energieausweis sind ergänzend zu den einschlägigen Regeln der Technik, Richtlinien, Normen allgemeinen und technischen Inhalts, Verordnungen, Gesetzen sowie sonstigen Vorschriften zu beachten.

Folgende Unterlagen (Pläne, Beschreibungen, Bescheide, etc.) der Hausverwaltung lagen dem Ersteller des Energieausweises zum Zeitpunkt der Berechnung vor:

Einreichplan für den Zubau der Veranda ca. 1960-1965 (genaues Jahr unbekannt)

Priorität der Erkenntnisse für die EKZ-Berechnung:

- 3.) Default-Werte / U-Werte It. Bauordnung ... nur massgeblich, wenn keine vertieften Erkenntnisse It. Vorhandenen Plänen od. der Begehung möglich waren
- 2.) Pläne / Aufbautenbeschreibung ... sind i.d.R. hauptmassgeblich (Auswechslungspläne vor Einreichpläne, Bestandspläne vor Auswechslungspläne)
- 1.) Begehung ... nur massgeblich, wenn offensichtliche Abweichungen, zu den Erkenntnissen der Behördenpläne gegeben sind (ggf. wird explizit darauf hingewiesen)

AU-HOF Consulting www.au-hof.at III Operngasse 6/3/5, 1010 Wien

projektanmerkungen FFH Langwiesgasse 12, 1140 Wien - Bestand ... 08052014

Bauteile

Gemäß OIB-6 Richtlinie (4. - 4.3) kann für Bestandsobjekte ein vereinfachtes Verfahren mit Default-Werten angewandt werden. Dieses wird in der EAW-Berechnung zum Teil angewandt, ebenso werden die Erkenntnisse aus dem Planakt des Eigentümers berücksichtigt. Im vorliegenden Projekt werden als Kontrolle bzw. Plausibilitätsprüfung zu den vorhandenen Aufbautenbeschreibungen zusätzlich die "Default"-Werte angegeben:

-- VERGLEICH der U-Werte durch Default-Werte mit der Bauteil-Eingabe: 1.) EFH vor 1945 / 2.) EFH ab 1960 / 3.) Landesgesetz Wien ab 11/1976

... Boden zu Erdreich / Kellerdecke

U=1,95 / 1,35 / 0,85 (Default) ... U-Beton mit 2cm Wärmedämmung U =

1,34

... oberste Geschossdecke

U=1,35 / 0,55 / 0,71 (Default) ... STB-Decke mit 3cm Wärmedämmung U =

0.95

... Dachfläche

U=1,30 / 0,55 / 0,71 (Default) ... Tramdecke mit 16cm Wärmedämmung U =

0.29

... Außenwand

U=1,75 / 1,20 / 1,00 (Default) ... Außenwand 25cm Durisol-MWK mit 10cm

Wärmedämmung U = 0.29

... Außenwand 25cm Ytong-MWK mit 10cm

Wärmedämmung U = 0,27

- -- Die plausibelste default-Wert Vorgabe ist "EFH ab 1960", diese Default-Werte dienen als Hilfe für die detaillierte Bauteileingabe.
- --- Die Außenwand wurde vor ca. 9-10 Jahren außenseitig mit 10cm Wärmedämmung gedämmt. Daher ist der errechnete U-Wert ~ 0,29W/m2K der Außenwand deutlich besser als der default-Wert (U=1,20W/m2K) lt. OIB-6 Richtlinie gemäß dem gegebenen Baualter.

Fenster

Gemäß OIB-6 Richtlinie (4. - 4.3) kann für Bestandsobjekte ein vereinfachtes Verfahren mit Default-Werten angewandt werden. Dieses wird in der EAW-Berechnung zum Teil angewandt, ebenso werden die Erkenntnisse aus dem Planakt der Hausverwaltung berücksichtigt. Im vorliegenden Projekt werden als Kontrolle bzw. Plausibilitätsprüfung zu den vorhandenen Aufbautenbeschreibungen zusätzlich die "Default"-Werte angegeben:

-- VERGLEICH der U-Werte durch Default-Werte mit der Bauteil-Eingabe:

1.) EFH vor 1945 / 2.) EFH ab 1960 / 3.) Landesgesetz Wien ab 11/1976 / 4.) Landesgesetz Wien ab 10/2001

... Fenster

U=2,50 / 3,00 / 2,50 / 1,90 (Default)

... Glas

g=0.67 / 0.67 / 0.67 / 0.67 (Default)

... Außentüren U=2,50 / 2,50 / 2,50 / 1,90 (Default)

Es gibt folgende Fensterkonstruktionen im Objekt:

Die jeweiligen Baualter der angeführten Fensterkonstruktionen wurden angenommen, da aus den Planunterlagen keine Erkenntnisse hervorgingen.

- Lt. Information des Eigentümers wurden die Fensterkonstruktionen ca. im Jahr 2005 getauscht.
- -- 2-S-Isolierglas mit PVC-Rahmen (ca. 9 Jahre alt) Ug = 1,30 / Uf = 1,60 / g = 0,60 / psi = 0,050 ... Uw ~ 1,46 -1,62 W/m2K
- -- Türportale (ohne Glasanteil, ca. 55 bis 60 Jahre alt) Eingabe mit Uw~2,50 W/m2K
- Die Verschattung wird pauschal (mit 85%) eingegeben.

Geometrie

-) Die Eingabe der Geometrie erfolgt nicht mit dem ungenaueren "vereinfachten Verfahren" nach Punkt 4.2 (OIB-6)

AU-HOF Consulting Bauplanungs- und Beratungsgmbh / Tel. 01/512 91 62 / office@au-hof.at

GEQ von Zehentmayer Software GmbH www.geq.at

Bearbeiter CJ

v2014,030305 ANMERKUNG o11 - Wien

Projektnr. 2849

09.05.2014

Seite 5

www.au-hof.at III Operngasse 6/3/5, 1010 Wien

projektanmerkungen

EFH Langwiesgasse 12, 1140 Wien - Bestand ... 08052014

AU-HOF consulting

sondern nach dem genauen Standardverfahren.

- -) Pufferräume: Prinzipiell werden folgende unbeheizte Pufferräume in der Geometrieberechnung berücksichtigt und vom beheizten Brutto-Volumen abgezogen: räumlich abgeschlossene unbeheizte Windfänge, Maschinenräume (Kühlaggregaträume), Öltankräume, Müllräume, KIWA-Abstellräume, Garagen o.ä. räumlich abgeschlossene Räume mit starkem Luftaustausch, welche hauptsächlich von außen begangen werden. Nicht im beheizten Brutto-Volumen zu berücksichtigen sind weiters It. ÖN B 8110-6: unbeheizte Dachböden und Kellergeschoße
- -) Lagerräume: Bei den üblichen Lager- und Nebenräume von Büros oder Verkaufsmärkte wird berücksichtigt, dass diese über den Raumverbund (offene Türen, etc) mitbeheizt werden. (diese zählen somit zum beheizten Brutto-Volumen)
- -) Lt. ÖN B 8110-6 sind Heiz- und Technikräume innerhalb der therm. Hülle zum beheizten Brutto-Volumen dazu zu zählen.
- -) Lt. ÖN B 8110-6 sind interne Gänge und STGH innerhalb der therm. Hülle zum beheizten Brutto-Volumen dazu zu zählen.

Haustechnik

Die Eingaben bezüglich der Haustechnik wurden It. Infos des Eigentümers vorgenommen. Es wurden folgende Angaben berücksichtigt:

- -- Raumheizung:
 - Gas-Brennwertkessel (zentral, Baujahr ab 2005)
 - Wärmeabgabe: Radiatoren
 - Standort: unkonditionierter Bereich im Kellergeschoss
 - überwiegend Thermostatventile

folgende Annahmen aufgrund keiner näheren Vorgaben/Infos:

- Systemtemp. 70°C / 55°C
- gleitender Betrieb, mit Modulierungsfähigkeit
- -- Warmwasser:
 - kombiniert
 - indirekt beheizter Speicher: Baujahr ab 1994, Standort unkonditionierter Bereich im Kellergeschoss
- -- Lüftung: natürliche Konditionierung, ohne Nassraumlüfter
- Beleuchtung: nicht maßgebend

Verbesserungsvorschläge

Gemäß Punkt 5 der OIB Richtlinie 6 sind zusätzliche Sanierungsmassnahmen zur Reduktion des Endenergiebedarfs zu empfehlen, welche im Rahmen der technisch und wirtschaftlichen Machbarkeit liegen, um eine bessere Energieffizienzklasse zu erreichen:

- --- Außenwand: zusätzliche Dämmung mit 10-18cm EPS-F plus WDVS (außenseitig) oder 5-15cm GK-VSS (MW+GK-Platte, innenseitig)
- --- Außenwand KG zu Erdreich: Dämmung mit 6-14cm XPS (außenseitig)
- --- Decke zu unbeh. Dachraum: Dämmung mit 16-24cm Mineralwolle
- -- Fußboden zu Erdreich: zusätzliche Dämmung mit 5-10cm XPS oder 5-10cm EPS-Granulat

www.au-hof.at III Operngasse 6/3/5, 1010 Wien

Heizlast Abschätzung

EFH Langwiesgasse 12, 1140 Wien - Bestand ... 08052014

Abschätzung der Gebäude-Heizlast auf Basis der Energieausweis-Berechnung

Berechnungsblatt

Bauherr Planer / Baufirma / Hausverwaltung

Christian Mondl

Langwiesgasse 12

1140 Wien-Penzing

Standort: Wien -11,4 °C Norm-Außentemperatur:

20 °C Brutto-Rauminhalt der Berechnungs-Raumtemperatur:

beheizten Gebäudeteile: Temperatur-Differenz: 31,4 K 641,77 m³ 470 02 m2

Tel.:

		Gebäudeh	nüllfläche:		470,92	m²
Bauteil	e .	Fläche	Wärmed koeffiz.	Korr faktor	Korr faktor	AxUxf
		A [m²]	[W/m² K]	(f)	ffh [1]	[W/K]
AD01	DE01 Decke EG zu Dachraum (U=0,95)	84,45	0,950	0,90		72,20
AW01	AW02a Außenwand Durisol 25cm + WDVS (U=0,29)	83,76	0,289	1,00		24,20
AW02	AW02b Außenwand Ytong 25cm + WDVS (U=0,27)	12,90	0,271	1,00		3,50
AW03	AW01b Außenwand KG 35cm (U=0,30) zu Außenluft	99,78	0,300	1,00		29,93
DS01	DE02 Decke Veranda zu Dachraum (U=0,29)	18,47	0,287	1,00		5,29
FE/TÜ	Fenster u. Türen nach Außen	52,25	1,620			84,65
EC01	FB01 Fußboden KG zu Erdreich (U=1,34)	102,92	1,339	0,28		38,49
EW01	AW01a Außenwand KG 35cm (U=1,30) zu Erdreich	16,40	1,305	0,38		8,16
	Summe OBEN-Bauteile	102,92				
	Summe UNTEN-Bauteile	102,92				
	Summe Außenwandflächen	212,84				
	Fensteranteil in Außenwänden 19,7 %	52,25				
Sumi	ne			[W/	K]	266
Wärn	nebrücken (vereinfacht)			[W/	K]	27
Trans	smissions - Leitwert L _T			[W/	K]	293,05
Lüftu	ngs - Leitwert L _V			[W/	K]	58,23
Gebä	ude-Heizlast Abschätzung	uftwechsel =	0,40 1/h	[kl	N]	11,0
Fläch	enbez. Heizlast Abschätzung (206 m	1 ²)	[W]	m² BG	F]	53,59

Die Gebäude-Heizlast Abschätzung dient als Anhaltspunkt für die Auslegung des Wärmeerzeugers.

Für die exakte Dimensionierung ist eine Heizlast-Berechnung nach ÖNORM H 7500 erforderlich.

www.au-hof.at III Operngasse 6/3/5, 1010 Wien

U-Wert Berechnung

EFH Langwiesgasse 12, 1140 Wien - Bestand ... 08052014

eilbezeichnung: V01a Außenwand KG 35cm (U=1,30) zu eiltyp: bestehend	Kurzbezeichnung:			
1.5 N. 5.7 P. N. B. W. W. W. W. W. W.	_,,,,,	t		////
nliegende Wand (<=1,5m unter Erdreich)		1		
medurchgangskoeffizient berechnet nach d U - Wert	DNORM EN ISO 6946 1,30 [W/m²K]			M 1 : 10
struktionsaufbau und Berechnung Baustoffschichten				
on innen nach außen		d	λ	$R = d / \lambda$
Bezeichnung		Dicke [m]	Leitfähigkeit [W/mK]	Durchlaßw. [m²K/W]
.106.04 Betonhohlsteinmauerwerk	В	0,350	0,550	0,636
e des Bauteils [m]		0,350		
me der Wärmeübergangswiderstände F	2			
500 · 100 ·	R _{si} +R _{se}		0,130	[m ² K/W]
	$R_T = R_{si} + \sum R_t + R_s$ $J = 1 / R_T$	e	0,766 1,30	[m²K/W] [W/m²K]

www.au-hof.at III Operngasse 6/3/5, 1010 Wien

U-Wert Berechnung

EFH Langwiesgasse 12, 1140 Wien - Bestand ... 08052014

Projekt: EFH Langwiesgasse 12, Auftraggeber Christian Mondl	1140 Wien - Bestand		itungsnr.:	
Bauteilbezeichnung: AW01b Außenwand KG 35cm (U=0,30)	Kurzbezeichnung AW03	g:	V//////	<u> </u>
Bauteiltyp: bestehend Außenwand		ı		
Wärmedurchgangskoeffizient berechnet r U - W		1		M 1:2
Konstruktionsaufbau und Berechnung				
Baustoffschichten		d	λ	$R = d / \lambda$
von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.
Nr Bezeichnung		[m]	[W/mK]	[m²K/W]
1 1.106.04 Betonhohlsteinmauerwerk	В	0,350	0,550	0,636
2 Kalk-Zementputz	В	0.020	1,000	0,000
			- 1.0.0.0	0,020
3 WDVS EPS-F 100	В	0,100	0,040	-
4 Silikatdünnputz	В В	0,100 0,007		0,020
The state of the s			0,040	0,020 2,500
4 Silikatdünnputz Dicke des Bauteils [m]	В	0,007	0,040 0,900	0,020 2,500 0,008
4 Silikatdünnputz		0,007 0,477	0,040	0,020 2,500

U = 1 / R_T

Wärmedurchgangskoeffizient

[W/m²K]

www.au-hof.at III Operngasse 6/3/5, 1010 Wien

U-Wert Berechnung

EFH Langwiesgasse 12, 1140 Wien - Bestand ... 08052014

Projekt: EFH Langwiesgasse 12, 1140 Auftraggeber Christian Mondl	Wien - Bestand	Blatt-Nr.: Bearbeitungsnr.:	3
Bauteilbezeichnung: AW02a Außenwand Durisol 25cm + WDVS	Kurzbezeichnung: AW01		
Bauteiltyp: bestehend Außenwand			А
Wärmedurchgangskoeffizient berechnet nach ÖN U - Wert	ORM EN ISO 6946 0,29 [W/m²K]	M 1:	10

	Baustoffschichten		d	λ	$R = d/\lambda$
lr	von innen nach außen Bezeichnung		Dicke [m]	Leitfähigkeit [W/mK]	Durchlaßw [m²K/W]
1	Kalkgipsputz	В	0,020	0,700	0,029
	1.222.02 Holzspanbeton	В	0,030	0,110	0,273
3	1.202.01 Kiesbetonsteg (Mantelbeton)	В	0,190	1,000	0,190
	1.222.02 Holzspanbeton	В	0,030	0,110	0,273
	Kalk-Zementputz	В	0,020	1,000	0,020
6	WDVS EPS-F 100	В	0,100	0,040	2,500
7	Silikatdünnputz	В	0,007	0,900	0,008
Dic	cke des Bauteils [m]		0,397		
SU	mme der Wärmeübergangswiderstände	D + D		0.470	F 21/04P
W	armedurchgangswiderstand	R _{si} +R _{se}		0,170	[m²K/W]
W	armedurchgangskoeffizient	$R_T = R_{si} + \sum R_t +$	R _{se}	3,463	[m²K/W]
	medurchgangskoeffizient	$U = 1/R_T$		0,29	[W/m²K]

www.au-hof.at III Operngasse 6/3/5, 1010 Wien

U-Wert Berechnung

EFH Langwiesgasse 12, 1140 Wien - Bestand ... 08052014

Projekt: EFH Langwiesgasse 12, 1140 Auftraggeber Christian Mondl	Wien - Bestand	Blatt-Nr. Bearbeit		
Bauteilbezeichnung: AW02b Außenwand Ytong 25cm + WDVS	Kurzbezeichnung: AW02	1		
Bauteiltyp: bestehend Außenwand		-		
Wärmedurchgangskoeffizient berechnet nach Ölt U - Wert	0,27 [W/m²K]			M 1 : 1
Konstruktionsaufbau und Berechnung				
Baustoffschichten		d	λ	R = d / λ

	Baustoffschichten		d	λ	$R = d / \lambda$
1	von innen nach außen		Dicke	Leitfähigkeit	Durchlaßw.
Ir	Bezeichnung		[m]	[W/mK]	[m²K/W]
1	Kalkgipsputz	В	0,020	0,700	0,029
2	Ytong Wandstein	В	0,250	0,260	0,962
	Kalk-Zementputz	В	0,020	1,000	0,020
4	WDVS EPS-F 100	В	0,100	0,040	2,500
	Silikatdünnputz	В	0,007	0,900	0,008
Di	cke des Bauteils [m]		0,397		
100	mmo dos Wissona übersana savide satisada	D + D		0.470	[21/AA/I
N	mme der Wärmeübergangswiderstände	R _{si} +R _{se}	_	0,170	[m²K/W]
U	amedurchgangswiderstand		R _{se}	3,689	[m²K/W]
м	armedurchgangskoeffizient	$U = 1 / R_{-}$		0.27	ΓW/m²K

Summe der Wärmeübergangswiderstände	R _{si} +R _{se}	0,170	[m²K/W]
Warmedurchgangswiderstand	$R_T = R_{si} + \Sigma R_t + R_{se}$	3,689	[m²K/W]
Warmedurchgangskoeffizient	U = 1 / R _T	0,27	[W/m²K]

www.au-hof.at III Operngasse 6/3/5, 1010 Wien

U-Wert Berechnung

0,170

0,748

1,34

[m²K/W]

[m²K/W]

[W/m²K]

EFH Langwiesgasse 12, 1140 Wien - Bestand ... 08052014

	ekt: EFH Langwiesgasse 12, 1140 raggeber Christian Mondl	Blatt-Nr.: Bearbeitungsnr.:			
	teilbezeichnung: B01 Fußboden KG zu Erdreich (U=1,34)				
Bau	teiltyp: bestehend anliegender Fußboden in konditioniertem Ke	ller (<=1,5m unter			
Wäi	rmedurchgangskoeffizient berechnet nach Ö U - Wert	1,34 [W/m²K]		//////////////////////////////////////	M 1 : 10
Kor	nstruktionsaufbau und Berechnung		d		
Kor	nstruktionsaufbau und Berechnung Baustoffschichten		d	λ	R = d / λ
Kor			Dicke	λ Leitfähigkeit	R = d / λ Durchlaßw.
	Baustoffschichten		Dicke [m]	λ Leitfähigkeit [W/mK]	R = d / λ Durchlaßw. [m²K/W]
Vr	Baustoffschichten von innen nach außen	В *	Dicke [m] 0,020	λ Leitfähigkeit [W/mK] 2,000	R = d / λ Durchlaßw. [m²K/W] 0,010
Nr 1	Baustoffschichten von innen nach außen Bezeichnung	В	Dicke [m] 0,020 0,050	λ Leitfähigkeit [W/mK] 2,000 1,480	R = d / λ Durchlaßw. [m²K/W] 0,010 0,034
Nr 1 2	Baustoffschichten von innen nach außen Bezeichnung FB-Belag	B B *	Dicke [m] 0,020 0,050 0,001	λ Leitfähigkeit [W/mK] 2,000 1,480 0,500	R = d / λ Durchlaßw. [m²K/W] 0,010 0,034 0,002
Nr 1 2 3	Baustoffschichten von innen nach außen Bezeichnung FB-Belag Estrich	B B *	Dicke [m] 0,020 0,050 0,001 0,020	λ Leitfähigkeit [W/mK] 2,000 1,480 0,500 0,044	R = d / λ Durchiaßw. [m²K/W] 0,010 0,034 0,002 0,455
Nr 1 2 3 4	Baustoffschichten von innen nach außen Bezeichnung FB-Belag Estrich Folie	B * B	Dicke [m] 0,020 0,050 0,001 0,020 0,020	λ Leitfähigkeit [W/mK] 2,000 1,480 0,500 0,044 0,700	R = d / λ Durchlaßw. [m²K/W] 0,010 0,034 0,002 0,455 0,029
Nr 1 2 3 4 5 6	Baustoffschichten von innen nach außen Bezeichnung FB-Belag Estrich Folie Trittschalldämmplatten Schüttung U-Beton	B B *	Dicke [m] 0,020 0,050 0,001 0,020 0,020 0,150	λ Leitfähigkeit [W/mK] 2,000 1,480 0,500 0,044	R = d / λ Durchiaßw. [m²K/W] 0,010 0,034 0,002 0,455
Nr 1 2 3 4 5 6	Baustoffschichten von innen nach außen Bezeichnung FB-Belag Estrich Folie Trittschalldämmplatten Schüttung	B * B	Dicke [m] 0,020 0,050 0,001 0,020 0,020	λ Leitfähigkeit [W/mK] 2,000 1,480 0,500 0,044 0,700	R = d / λ Durchlaßw. [m²K/W] 0,010 0,034 0,002 0,455 0,029

 $R_{si} + R_{se}$ $R_T = R_{si} + \sum_{t} R_{t} + R_{se}$

 $U = 1/R_T$

Summe der Wärmeübergangswiderstände

Wärmedurchgangswiderstand

Wärmedurchgangskoeffizient

^{*...} diese Schicht zählt nicht zur Berechnung

www.au-hof.at III Operngasse 6/3/5, 1010 Wien

U-Wert Berechnung

EFH Langwiesgasse 12, 1140 Wien - Bestand ... 08052014

Projekt: EFH Langwiesgasse 12, 1140 Wien - Bestand Auftraggeber Christian Mondl						Blatt-Nr.: Bearbeitungsnr.:		
	uteilbezeichnung: FB02 Geschossdecke (U=0,88)		Kurzbezeichn ZD01	ung		ı		
	uteiltyp: bestehend rme Zwischendecke							
Wä	rmedurchgangskoeffizient berechnet na U - We		0,88 [W/m	Mark Co.	<u> </u>			
Ko	nstruktionsaufbau und Berechnung					Α	M 1 : 20	
	Baustoffschichten			_	d	λ	D = 411	
Nr	von innen nach außen Bezeichnung			1	Dicke [m]	Leitfähigkeit [W/mK]	R = d / λ Durchlaßw. [m²K/W]	
	FB-Belag		В	*	0,020	2,000	0,010	
-	Estrich		В		0,050	1,480	0,034	
_	Folie		В	*	0,001	0,500	0,002	
	Trittschalldämmplatten Schüttung		В		0,030	0,044	0,682	
_	STB-Decke		В		0,030	0,700	0,043	
	Kalk-Zementputz		В	1	0,250	2,500	0,100	
	metechnisch relevante Dicke des Bauteils		В		0,015	0,800	0,019	
Dic	ke des Bauteils [m]	[m]		_	0,375			
-	to des bautens [m]				0,396			
Sun	nme der Wärmeübergangswiderstände	R si+	P			0.000		
Wä	medurchgangswiderstand	R = =	R + T P 4	D		0,260	[m²K/W]	
	medurchgangskoeffizient	U = 1	$R_{si} + \Sigma R_t +$	r _s	e	1,138	[m²K/W]	
4	Jangeneenk	0-1	/ KT			0,88	[W/m ² K]	

^{*...} diese Schicht zählt nicht zur Berechnung

AU-HOF Consulting www.au-hof.at III Operngasse 6/3/5, 1010 Wien

U-Wert Berechnung

Pro	ejekt: EFH Langwiesgasse 12, 1	Blatt-Nr	Blatt-Nr.: 7			
Au	ftraggeber Christian MondI	Bearbe	Bearbeitungsnr.:			
	uteilbezeichnung: DE01 Decke EG zu Dachraum (U=0,95)	: 77/2	A			
	uteiltyp: bestehend cke zu unkonditioniertem geschloss. Dac	hraum				
Wä	rmedurchgangskoeffizient berechnet nach	ch ÖNORM EN ISO 6946				
	U - Wer	t 0,95 [W/m²K]	2			
			2000	1	M 1:10	
Ko	nstruktionsaufbau und Berechnung					
	Baustoffschichten		d	λ	R = d / λ	
	von außen nach innen		Dicke	Leitfähigkeit	Durchlaßw.	
Nr	Bezeichnung		[m]	[W/mK]	[m²K/W]	
					[iii iova]	
1	1.202.06 Estrichbeton	В	0,040	1,480	0,027	
_	1.202.06 Estrichbeton Wärmedämmung	B B	0,040 0,030	1,480 0,044	-	
2					0,027	
3	Wärmedämmung STB-Decke Kalk-Zementputz	В	0,030	0,044	0,027 0,682	
3	Wärmedämmung STB-Decke	В В	0,030 0,250	0,044 2,000	0,027 0,682 0,125	
3	Wärmedämmung STB-Decke Kalk-Zementputz	В В	0,030 0,250 0,015	0,044 2,000	0,027 0,682 0,125	
2 3 4 Dic	Wärmedämmung STB-Decke Kalk-Zementputz	B B B	0,030 0,250 0,015	0,044 2,000	0,027 0,682 0,125	
2 3 4 Dic	Wärmedämmung STB-Decke Kalk-Zementputz ke des Bauteils [m]	В В	0,030 0,250 0,015 0,335	0,044 2,000 0,800	0,027 0,682 0,125 0,019	

www.au-hof.at III Operngasse 6/3/5, 1010 Wien

U-Wert Berechnung

EFH Langwiesgasse 12, 1140 Wien - Bestand ... 08052014

32	jekt: EFH Langwiesgasse 12, 1140 V traggeber Christian Mondl	Blatt-Nr.: Bearbeitungsnr.:			
1000	uteilbezeichnung: E02 Decke Veranda zu Dachraum (U=0,29)	A			
	iteiltyp: bestehend chschräge nicht hinterlüftet			VXX	XX
	rmedurchgangskoeffizient berechnet nach ÖN U - Wert nstruktionsaufbau und Berechnung	0,29 [W/m²K]	V		M 1 : 10
110.	Baustoffschichten		d	λ	Anteil
Nr	von außen nach innen Bezeichnung		Dicke [m]	Leitfähigkeit [W/mK]	19/1
			0.000		[%]
1	Blechdeckung inkl. Dachpappe	B *	0,020	1,500	[70]
_	Blechdeckung inkl. Dachpappe Schalung	B *	0,020	1,500 0,120	[70]
2					10,7
2	Schalung	В		0,120	
3	Schalung Holztram dazw.	B B	0,025	0,120 0,120	10,7

Wärmedurchg	angskoeff	izient		U = 1 / R _T			0,29 [W/m ² K]
			Untere	er Grenzwert: R Tu	j= 3,4585	1	3,4900 [m ² K/W]
Holztram:	Achsabs	tand [m]:	0,750	Breite [m]: 0,0	80		R _{si} + R _{se} = 0,140

0,201

0,221

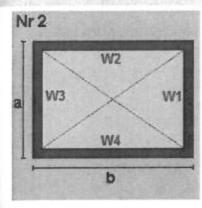
(Berechnung nach ÖNORM EN ISO 6946)

wärmetechnisch relevante Dicke des Bauteils [m]

Zusammengesetzter Bauteil - 1 inhomogene Schicht

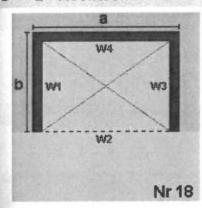
Dicke des Bauteils [m]

^{*...} diese Schicht zählt nicht zur Berechnung


www.au-hof.at III Operngasse 6/3/5, 1010 Wien

Geometrieausdruck

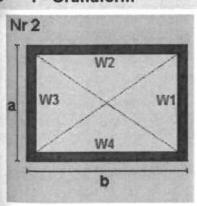
EFH Langwiesgasse 12, 1140 Wien - Bestand ... 08052014



KG 1 - Grundform

		= 10,35 = 2,50 + obere Decke: 0,38 => 2,88m BRI 264,83m ³
Wand W1		AW03 AW01b Außenwand KG 35cm (U=0,30 Eingabe Fläche
		EW01 A = $(1,60 \times 0,90) / 2$
Wand W2	29,76m ²	
Wand W3	25,59m2	AW03
Wand W4	13,20m2	EW01 AW01a Außenwand KG 35cm (U=1,30
	Teilung	Eingabe Fläche
	16,56m²	AW03 A = 10,35 x 1,60 16,56
Decke	92,12m²	ZD01 FB02 Geschossdecke (U=0,88)
Roden	92.12m2	ECO1 FB01 Fußboden KG zu Erdreich (U

KG 2 - Rechteck



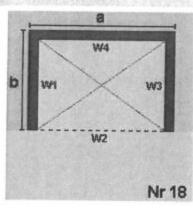
lichte R		= 2,50		Decke: 0,38 => 2,88m
BGF	10,80m-	BRI	31,030	
Wand W1	5,75m²	AW03	AW01b	Außenwand KG 35cm (U=0,30
Wand W2	$-15,53m^2$	AW03		
Wand W3	5,75m²	EOWA		
Wand W4	15,53m2	AW03		
Decke	10,80m2	ZD01	FB02 -	- Geschossdecke (U=0,88)
Boden	10,80m²	EC01	FB01 -	- Fußboden KG zu Erdreich (U

KG Summe

KG Bruttogrundfläche [m²]: 102,92 KG Bruttorauminhalt [m³]: 295,88

EG 1 - Grundform

	0 b	그 마양에 적 경기에 가는 이렇게 되었다. 그렇게 그렇게 하면 어느 그렇게 되었다.
lichte R		= 2,80 + obere Decke: 0,34 => 3,14m
BGF	92,12m²	BRI 288,78m³
Wand W1	18,65m²	AW01 AW02a Außenwand Durisol 25cm +
		2,95 x 3,14 (Länge x Höhe)
	9,25m²	$AW02 A = 2,95 \times GH$
Wand W2	32,45m2	AW01
Wand W3	27,90m²	AW01
Wand W4	24,30m2	AW01
	Teilung	2,60 x 3,14 (Länge x Höhe)
	8,15m²	$AW02 A = 2,60 \times GH$
Decke	84,45m²	AD01 DE01 Decke EG zu Dachraum (U=0,
Teilung	7,67m²	DS01 $A = 2,60 \times 2,95$
Boden	-92,12m²	ZD01 FB02 Geschossdecke (U=0,88)


www.au-hof.at III Operngasse 6/3/5, 1010 Wien

Geometrieausdruck

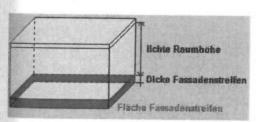
EFH Langwiesgasse 12, 1140 Wien - Bestand ... 08052014

EG 2 - Rechteck

lichte Ra	umhöhe .	= 2,00 = 2,80		+ obere Decke: 0,20 => 3,00m
BGF	10,80m²	BRI		32,41m ³
Wand W1	6,00m²	AWO1 -		AW02a Außenwand Durisol 25cm +
Wand W2	-16,21m ²	AW01		
Wand W3	6,00m²	AW01		
Wand W4	16,21m ²			
Decke	10,80m2	DS01 -	-	DE02 Decke Veranda zu Dachraum
Boden	-10,80m²	ZD01 -	-	FB02 Geschossdecke (U=0,88)

EG Summe

EG Bruttogrundfläche [m²]: 102,92 EG Bruttorauminhalt [m³]: 321,19


Deckenvolumen EC01

Fläche 102,92 m² x Dicke 0,24 m = $24,70 \text{ m}^3$

Bruttorauminhalt [m³]:

24,70

Fassadenstreifen - Automatische Ermittlung

Wand		Boden	Dicke	Länge	Fläche
EW01	-	EC01	0,240m	10,35m	2,48m²
AW03	-	EC01	0,240m	32.15m	7.72m²

Gesamtsumme Bruttogeschoßfläche [m²]: 205,83 Gesamtsumme Bruttorauminhalt [m³]: 641,77

www.au-hof.at III Operngasse 6/3/5, 1010 Wien

erdberührte Bauteile

EFH Langwiesgasse 12, 1140 Wien - Bestand ... 08052014

EC01 erdanliegender Fußboden in konditioniertem Keller (<=1,5m unter Erdreich) 102,92 m²

Lichte Höhe des Kellers

2,50 m

Perimeterlänge

42,50 m

erdanliegende Kellerwand

EW01 -- AW01a -- Außenwand KG 35cm (U=1,30) zu Erdreich

Korrekturfaktor EW

Leitwert EW 8,16 W/K

0,28

0,38

EC 38,49 W/K

Gesamt Leitwert

46,65 W/K

Korrekturfaktoren, Leitwerte It. ÖNORM EN ISO 13370

www.au-hof.at III Operngasse 6/3/5, 1010 Wien

Fenster und Türen

EFH Langwiesgasse 12, 1140 Wien - Bestand ... 08052014

-	Тур	1	Bauteil	An	z. Bezeichnung	Breite	Höhe	Fläche	He	116	DO:			OHIO	-	~	
	.,,,,		5551611		e oversion in ing	m	m	m²	Ug W/m²K	Uf W/m²K	PSI W/mK	Ag m²	Uw W/m³K	AxUxf [W/K]	9	fs	
В				Pri	ifnormmaß Typ 1 (T1)	1,23	1,48	1,82	1,30	1,60	0,050	1,26	1,52	10000	0,60	317	10
ŀ												1,26			-		
	NO																
3	T1	KG	AW03	2	2S+PVC 05 2,00 x 1,60	2,00	1,60	6,40	1,30	1,60	0,050	4,82	1,47	9,42	0,60	0.85	
3	T1	EG	AW01	1	2S+PVC 05 2,40 x 1,70	2,40	1,70	4,08	1,30	1,60	0,050	3,17	1,46	5,94	1883	0.85	
3	T1	EG	AW01	1	2S+PVC 05 4,90 x 2,80	4,90	2,80	13,72	1,30	1,60	0,050	11,33	1,46		0.60	0.85	
Ī				4				24,20				19,32		35,38			
	NW				Union the Report of	90								not include			
1	T1	KG	AW03	1	2S+PVC 05 0,90 x 1,00	0,90	1,00	0,90	1,30	1,60	0,050	0,52	1,59	1.43	0.60	0.85	
		EG	AW01	1	Tür Windfang 1,20 x 2,10	1,20	2,10	2,52					2,50	6,30		0,85	
				2	210 3244			3,42				0,52		7,73			
	SO				WATER SPECIAL NO									26-76264			
		KG	AW03	2	Türen KG 1,00 x 2,10	1,00	2,10	4,20					2,50	10,50	0.62	0,85	
	T1	KG	AW03	1	2S+PVC 05 2,00 x 1,20	2,00	1,20	2,40	1,30	1,60	0,050	1,69	1,50	3,61	0.60	0,85	
	T1	EG	AW01	1	2S+PVC 05 1,00 x 1,70	1,00	1,70	1,70	1,30	1,60	0,050	1,15	1,53	2,60	0.60	0,85	
	T1	EG	AW01	1	2S+PVC 05 2,80 x 1,70	2,80	1,70	4,76	1,30	1,60	0,050	3,51	1,52	7,24	0,60	0,85	
	T1	EG	AW02	1	2S+PVC 05 1,50 x 1,50	1,50	1,50	2,25	1,30	1,60	0,050	1,61	1,50	3,37	0,60	0,85	
				6				15,31				7,96		27,32			
1	SW				VIII-Medical and all									v total			
	T1	KG	AW03	3	2S+PVC 05 1,10 x 0,70	1,10	0,70	2,31	1,30	1,60	0,050	1,19	1,62	3,74	0.60	0.85	
	T1	EG	AW01	2	2S+PVC 05 1,40 x 1,70	1,40	1,70	4,76	1,30	1,60	0,050	3,46	1,49	2233	0,60	0.85	
2	T1	EG	AW02	1	2S+PVC 05 1,50 x 1,50	1,50	1,50	2,25	1,30	1,60	0,050	1,61	1,50	200	0,60	0,85	
				6				9,32				6,26		14,22	-1	-100	
iu	mme			18				52,25				35.32		84,65			

Ug... Uwert Glas Uf... Uwert Rahmen PSI... Linearer Korrekturkoeffizient Ag... Glasfläche

g... Energiedurchlassgrad Verglasung fs... Verschattungsfaktor Typ... Prüfnormmaßtyp

B... Fenster gehört zum Bestand des Gebäudes

www.au-hof.at III Operngasse 6/3/5, 1010 Wien

Rahmenbreiten - Rahmenanteil EFH Langwiesgasse 12, 1140 Wien - Bestand ... 08052014

Bezeichnung	Rb. re m	Rb.li m	Rb.ob m	Rb. u m	Anteil %	Stulp Anz.	Stb.	Pfost Anz.		H-Spr, V-Spr. Anz. Anz.	Spb.	Bezeichnung - Glas/Rahmer
2S+PVC 05 2,00 x 1,60	0,100	0,100	0,100	0,160	25							2-S-Isolierglas mit PVC-Rahmen (Baujahr
2S+PVC 05 0,90 x 1,00	0,100	0,100	0,100	0,160	42					1		~2005) 2-S-Isolierglas mit PVC-Rahmen (Baujahr
2S+PVC 05 2,00 x 1,20	0,100	0,100	0,100	0,160	30							~2005) 2-S-Isolierglas mit PVC-Rahmen (Baujahr
2S+PVC 05 1,10 x 0,70	0,100	0,100	0,100	0,160	49					ĺ		~2005) 2-S-Isolierglas mit PVC-Rahmen (Baujahr
2S+PVC 05 2,40 x 1,70	0,100	0,100	0,100	0,160	22					ĺ		~2005) 2-S-Isolierglas mit PVC-Rahmen (Baujahr
2S+PVC 05 4,90 x 2,80	0,100	0,100	0,100	0,160	17			3	0,080	İ		~2005) 2-S-Isolierglas mit PVC-Rahmen (Baujahr
2S+PVC 05 1,00 x 1,70	0,100	0,100	0,100	0,160	32							~2005) 2-S-Isolierglas mit PVC-Rahmen (Baujahr
2S+PVC 05 2,80 x 1,70	0,100	0,100	0,100	0,160	26			2	0,080			~2005) 2-S-Isolierglas mit PVC-Rahmen (Baujahr
2S+PVC 05 1,50 x 1,50	0,100	0,100	0,100	0,160	28				ĺ			~2005) 2-S-Isolierglas mit PVC-Rahmen (Baujahr
2S+PVC 05 1,40 x 1,70	0,100	0,100	0,100	0,160	27				i			-2005) 2-S-Isolierglas mit PVC-Rahmen (Baujahr
Typ 1 (T1)	0,100	0,100	0,100	0,160	31				ĺ		- 1	2-S-Isolierglas mit PVC-Rahmen (Baujahr -2005)

Rb.li,re.ob,u Rahmenbreite links,rechts.oben, unten [m]

Stb. Stulpbreite [m] H-Spr. Anz Anzahl der horizontalen Sprossen

Pfostenbreite [m] Тур Prüfnormmaßtyp

V-Spr. Anz Anzahl der vertikalen Sprossen

Anteil [%] Rahmenanteil des gesamten Fensters Spb. Sprossenbreite [m]

www.au-hof.at III Operngasse 6/3/5, 1010 Wien

Monatsbilanz Standort HWB

EFH Langwiesgasse 12, 1140 Wien - Bestand ... 08052014

Standort: Wien

BGF [m²] = 205,83

L_T [W/K] = 293,05

Innentemp.[°C] = 20

τ tau [h] =

54,81

BRI [m3] =

641,77

L_V [W/K] = 58,23

 $qih [W/m^2] = 3,75$

a = 4,426

Monate	Tage	Mittlere Außen- temperaturen	Transmissions- wärme- verluste	Lüftungs- wärme- verluste	Wärme- verluste	Innere Gewinne	Solare Gewinne	Gesamt- Gewinne	Verhältnis Gewinn/ Verlust	Ausnutz- ungsgrad	Wärme- bedarf
		°C	kWh	kWh	kWh	kWh	kWh	kWh			kWh
Jänner	31	-1,64	4 719	938	5 657	459	285	745	0,13	1,00	4 912
Februar	28	0,33	3 873	770	4 643	415	479	894	0,19	1,00	3 750
März	31	4,30	3 423	680	4 104	459	735	1 194	0,29	1,00	2 913
April	30	9,17	2 285	454	2 738	445	974	1 419	0,52	0,97	1 358
Mai	31	13,85	1 341	266	1 607	459	1 257	1 717	1,07	0,79	147
Juni	30	16,97	640	127	767	445	1 266	1 711	2,23	0,44	0
Juli	31	18,65	294	58	353	459	1 263	1 723	4,88	0,20	0
August	31	18,19	394	78	472	459	1 122	1 582	3,35	0,30	0
September	30	14,51	1 158	230	1 389	445	864	1 309	0,94	0,84	169
Oktober	31	9,18	2 360	469	2 828	459	606	1 065	0,38	0,99	1 772
November	30	3,95	3 386	673	4 059	445	309	753	0,19	1,00	3 306
Dezember	31	0,32	4 290	852	5 142	459	227	686	0,13	1,00	4 456
Gesamt	365		28 164	5 596	33 759	5 409	9 389	14 798			22 782
			nutz	bare Gewi	inne:	4 286	6 448	10 734			

HWB BGF = 110,69 kWh/m²a

Ende Heizperiode: 18.05. Beginn Heizperiode: 14.09.

www.au-hof.at III Operngasse 6/3/5, 1010 Wien

Monatsbilanz Referenzklima HWB

EFH Langwiesgasse 12, 1140 Wien - Bestand ... 08052014

 $L_V[W/K] =$

Standort: Referenzklima

641,77

 $BGF[m^2] =$ 205,83

BRI [m3] =

LT [W/K] = 293,05

58,23

Innentemp.[°C] = 20

τ tau [h] = 54,81

 $qih [W/m^2] = 3,75$

a = 4,426

Monate	Tage	Außen- temperaturen	Transmissions- wärme- verluste	Lüftungs- wärme- verluste	Wärme- verluste	Innere Gewinne	Solare Gewinne	Gesamt- Gewinne	Verhältnis Gewinn/ Verlust	Ausnutz- ungsgrad	Wärme- bedarf
Ball Land		°C	kWh	kWh	kWh	kWh	kWh	kWh	, chaot		kWh
Jänner	31	-1,53	4 694	933	5 627	459	327	787	0,14	1,00	4 840
Februar	28	0,73	3 795	754	4 549	415	519	933	0,21	1,00	3 616
März	31	4,81	3 312	658	3 970	459	753	1 212	0,31	1,00	2 762
April	30	9,62	2 190	435	2 625	445	947	1 392	0,53	0,97	1 274
Mai	31	14,20	1 265	251	1 516	459	1 212	1 672	1,10	0,77	222
Juni	30	17,33	563	112	675	445	1 213	1 657	2,45	0,40	8
Juli	31	19,12	192	38	230	459	1 265	1 725	7,50	0,13	0
August	31	18,56	314	62	376	459	1 108	1 568	4,17	0,13	- 1
September	30	15,03	1 049	208	1 257	445	866	1 311	1,04	0.80	244
Oktober	31	9,64	2 259	449	2 708	459	618	1 077	0,40	0,99	211 1 642
November	30	4,16	3 342	664	4 006	445	338	782	0,20	1,00	
Dezember	31	0,19	4 319	858	5 177	459	261	720	0,14		3 224
Gesamt	365		27 294	5 423	32 717	5 409	9 427	14 836	0,14	1,00	4 457
			nutzi	pare Gewi		4 183	6 277	10 460			22 257

HWB _{BGF} = 108,13 kWh/m²a

www.au-hof.at III Operngasse 6/3/5, 1010 Wien

RH-Eingabe

EFH Langwiesgasse 12, 1140 Wien - Bestand ... 08052014

Raumheizung

Allgemeine Daten

Art der Raumheizung

gebäudezentral

Abgabe

Haupt Wärmeabgabe

Radiatoren, Einzelraumheizer

Systemtemperatur

70°/55°

Regelfähigkeit

Einzelraumregelung mit Thermostatventilen

Heizkostenabrechnung

Individuelle Wärmeverbrauchsermittlung und Heizkostenabrechnung (Fixwert)

Verteilung					Leitungslänge	en It. Defaultwerten
	gedämmt	Verhältnis Dämmstoffdicke zu Rohrdurchmesser	Außen- Durchmesser [mm]	Dämmung Armaturen	Leitungslänge [m]	konditioniert [%]
Verteilleitungen	Ja	1/3	finni	Nein	15.40	50
Steigleitungen	Ja	1/3		Nein	16,47	100
Anbindeleitunge	n Nein		20,0	Nein	115,26	100

Speicher

Art des Speichers

Pufferspeicher

Standort

nicht konditionierter Bereich

Baujahr

ab 1994

Nennvolumen

954 1

Defaultwert

Täglicher Bereitschaftsverlust Wärmespeicher

q b.WS

3.95 kWh/d

Anschlussteile gedämmt

Heizgerät Brennwertkessel

Defaultwert

Bereitstellung

Bereitstellungssystem Flüssiger oder gasförmiger Brennstoff

Energieträger Modulierung

Baujahr Kessel

mit Modulierungsfähigkeit

ab 2005

Nennwärmeleistung

Heizkreis

gleitender Betrieb

Standort nicht konditionierter Bereich

14,52 kW

Defaultwert

Korrekturwert des Wärmebereitstellungssystems Kessel bei Volllast 100%

Kesselwirkungsgrad entsprechend Prüfbericht

Kesselwirkungsgrad bei Betriebsbedingungen Kessel bei Teillast 30%

Kesselwirkungsgrad entsprechend Prüfbericht Kesselwirkungsgrad bei Betriebsbedingungen

Betriebsbereitschaftsverlust bei Prüfung

1,00% Fixwert

92,2% Defaultwert η 100%

 $\eta_{be,100\%}$ 91,2%

98,2% Defaultwert $\eta_{30\%}$

η be,30% 97,2%

q bb.Pb 1,1% Defaultwert

Hilfsenergie - elektrische Leistung

Umwälzpumpe Speicherladepumpe 56,51 W Defaultwert 56,51 W Defaultwert

*WHOF Consulting Bauplanungs- und Beratungsgmbh / Tel. 01/512 91 62 / office@au-hof.at Von Zehentmayer Software GmbH www.geq.at

2014,030305 REPRHEIN1 o11 - Wien

Projektnr. 2849

09.05.2014

Bearbeiter CJ Seite 23

www.au-hof.at III Operngasse 6/3/5, 1010 Wien

WWB-Eingabe

EFH Langwiesgasse 12, 1140 Wien - Bestand ... 08052014

Warmwasserbereitung

Allgemeine Daten

Art der Warmwasserb.

gebäudezentral

Warmwasserbereitung

kombiniert mit Raumheizung

Abgabe

Heizkostenabrechnung Individuelle Wärmeverbrauchsermittlung und Heizkostenabrechnung (Fixwert)

Wärmeverteilung ohne Zirkulation

Leitungslängen It Defaultworten

					Leitungsland	gen it. Defaultwe	πen
	gedämmt	Verhältnis Dämmstoffdicke zu Rohrdurchmesser	Außen- Durchmesser [mm]	Dämmung Armaturen	Leitungslänge [m]	konditioniert [%]	
Verteilleitungen	Ja	1/3	£	Nein	9.14	50	
Steigleitungen	Ja	1/3		Nein	8,23	100	
Stichleitungen	Nein		20,0		32,93	Material Stahl	2,42 W/m

Speicher

Art des Speichers

indirekt beheizter Speicher nicht konditionierter Bereich

Standort Baujahr

Ab 1994

Nennvolumen

2881

Defaultwert

Täglicher Bereitschaftsverlust Wärmespeicher

2,33 kWh/d

Anschlussteile gedämmt

Defaultwert

Hilfsenergie - elektrische Leistung

Speicherladepumpe

q b.WS

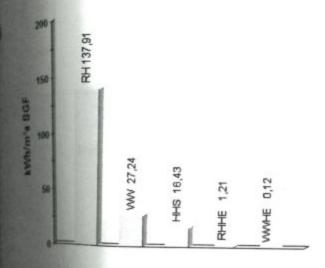
56,51 W Defaultwert

HOF Consulting All-hof.at III Operngasse 6/3/5, 1010 Wien

mergie Analyse EFH Langwiesgasse 12, 1140 Wien - Bestand ... 08052014

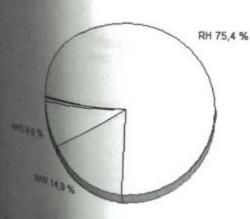
nheizung, Warmwasser

33 992 kWh


Elektrische Energie 3 655 kWh

Blanch Bernergie, Warmwasser Hilfsenergie, Haushaltsstrom

Gesamt


37 647 kWh

Energiebedarf in kWh/m²a BGF

= Raumheizung 137,91 WW = Warmwasser 27,24 HHS = Haushaltsstrom 16,43 RHHE = Raumheizung Hilfsenergie 1,21 = Warmwasser Hilfsenergie 0,12

Energiebedarf in %

_				
\Box	RH	= Raumheizung	75,4	5
	WW	= Warmwasser	14,9	
	HHS	= Haushaltsstrom	9.0	
	RHHE	= Raumheizung Hilfsenergie	0.7	
	WWHE	= Warmwasser Hilfsenergie	0.1	

Chnittliche Klimadaten, standardisierte interne Wärmegewinne sowie ein standardisiertes Nutzerverhalten zugrunde und Kosten können daher von den tatsächlichen Verbrauchswerten abweichen.

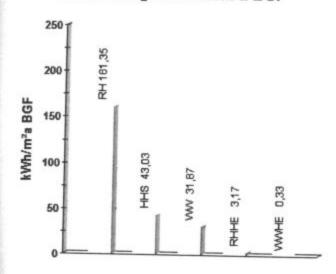
Planungs- und Beratungsgmbh / Tel. 01/512 91 62 / office@au-hof.at oftware GmbH www.geq.at

1 011 - Wien

Projektnr. 2849

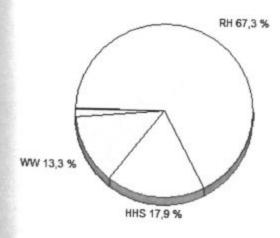
09.05.2014

Bearbeiter CJ Seite 25


www.au-hof.at III Operngasse 6/3/5, 1010 Wien

Energie Analyse

EFH Langwiesgasse 12, 1140 Wien - Bestand ... 08052014



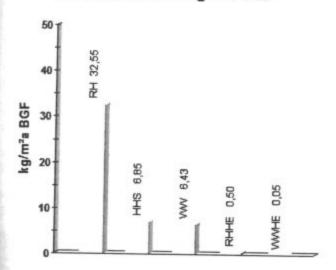
Primärenergie in kWh/m²a BGF

	RH	=	Raumheizung	161,35
\Box	HHS	=	Haushaltsstrom	43,03
\perp	WW	=	Warmwasser	31,87
\vdash	RHHE		Raumheizung Hilfsenergie	3,17
Ш	WWHE	=	Warmwasser Hilfsenergie	0,33

Primärenergie in %

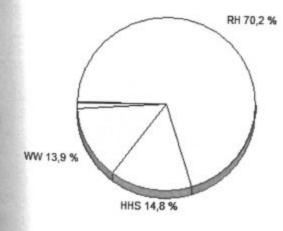
RH	= Raumheizung	67,3	
HHS	= Haushaltsstrom	17,9	
WW	= Warmwasser	13,3	
RHHE	= Raumheizung Hilfsenergie	1,3	
WWHE	= Warmwasser Hilfsenergie	0,1	

Der Berechnung liegen durchschnittliche Klimadaten, standardisierte interne Wärmegewinne sowie ein standardisiertes Nutzerverhalten zugrunde. Die errechneten Bedarfswerte und Kosten können daher von den tatsächlichen Verbrauchswerten abweichen.


www.au-hof.at III Operngasse 6/3/5, 1010 Wien

Energie Analyse

EFH Langwiesgasse 12, 1140 Wien - Bestand ... 08052014



CO2 Emission in kg/m²a BGF

	RH	=	Raumheizung	32,55
	HHS	=	Haushaltsstrom	6,85
\Box	WW	=	Warmwasser	6,43
\Box	RHHE	=	Raumheizung Hilfsenergie	0,50
\Box	WWHE	=	Warmwasser Hilfsenergie	0,05

CO2 Emission in %

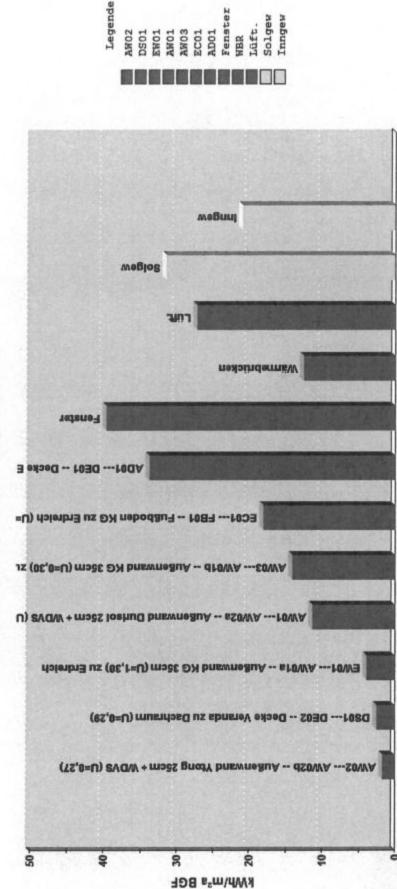
\perp	RH	= Raumheizung	70,2	
	HHS	= Haushaltsstrom	14,8	
\Box	MM	= Warmwasser	13,9	
	RHHE	= Raumheizung Hilfsenergie	1,1	-
	WWHE	= Warmwasser Hilfsenergie	0,1	•

Der Berechnung liegen durchschnittliche Klimadaten, standardisierte interne Wärmegewinne sowie ein standardisiertes Nutzerverhalten zugrunde. Die errechneten Bedarfswerte und Kosten können daher von den tatsächlichen Verbrauchswerten abweichen.

www.au-hof.at III Operngasse 6/3/5, 1010 Wien

Energie Analyse - Details EFH Langwiesgasse 12, 1140 Wien - Bestand ... 08052014

Primärenergienbedarf, CO2-Emission


	Energiebedarf [kWh/m²]	PEB Faktor PEB [kWh/m²]	CO2 Faktor [kg/kWh] CO2-Emission [kg/m²]
Raumheizung		1,170	0,236
Erdgas	137,91	161,35	32,55
Raumheizung Hilfsenergie		2,620	0,417
Elektrische Energie	1,21	3,17	0,50
Warmwasser		1,170	0,236
Erdgas	27,24	31,87	6,43
Warmwasser Hilfsenergie		2,620	0,417
Elektrische Energie	0,12	0,33	0,05
Haushaltsstrom		2,620	0,417
Elektrische Energie	16,43	43,03	6,85
	182,90	239,74	46,38

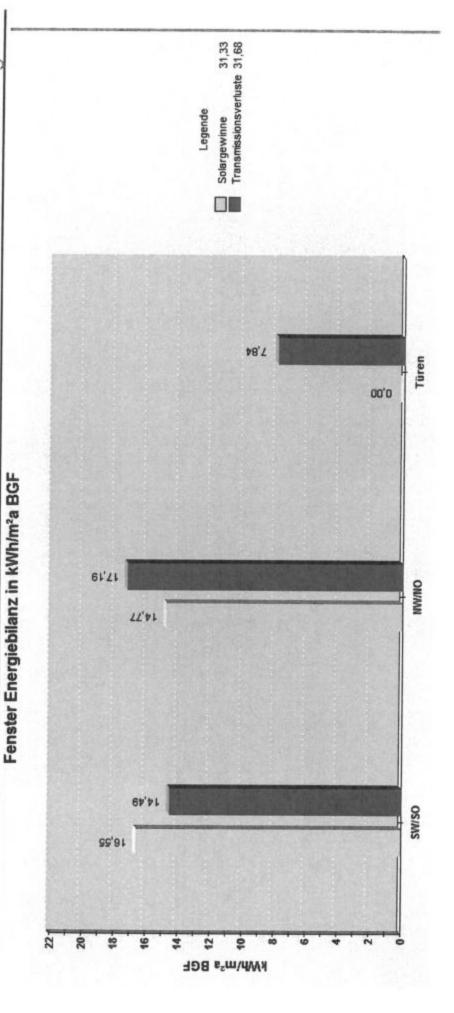
Der Berechnung liegen durchschnittliche Klimadaten, standardisierte interne Wärmegewinne sowie ein standardisiertes Nutzerverhalten zugrunde. Die errechneten Bedarfswerte und Kosten können daher von den tatsächlichen Verbrauchswerten abweichen.

Ausdruck Grafik

EFH Langwiesgasse 12, 1140 Wien - Bestand ... 08052014

Verluste und Gewinne in kWh/m²a BGF

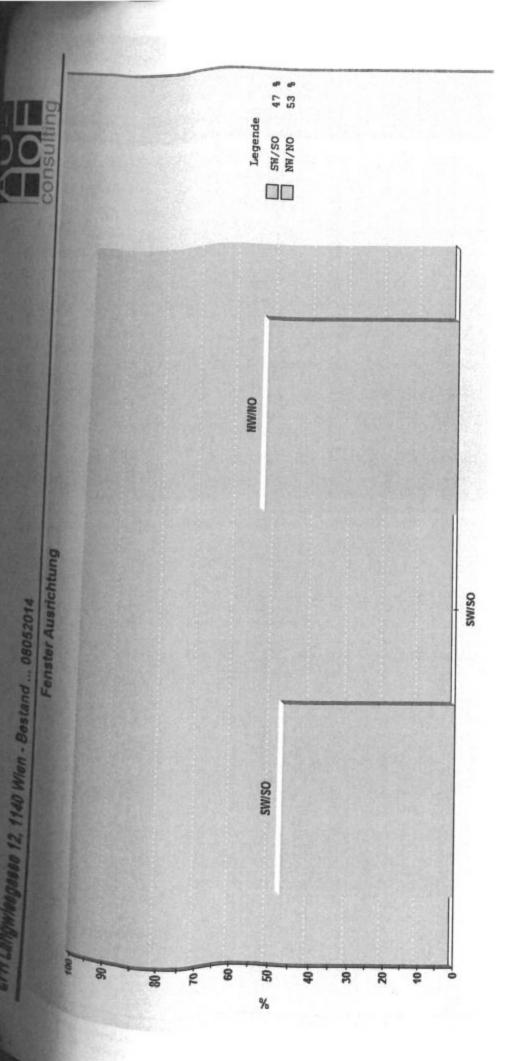
1,63 2,47 111,30 113,97 117,97 117,97 117,97 112,44 27,19 27,19 20,82


AU-HOF Consulting Bauplanungs- und Beratungsgmbh / Tel. 01/512 91 62 / office@au-hof.at GEQ von Zehentmayer Software GmbH www.geq.at

Projektnr. 2849 v2014,030305 REPOPT1 o11 - Wien

09.05.2014

Ausdruck Grafik


EFH Langwiesgasse 12, 1140 Wien - Bestand ... 08052014

AU-HOF Consulting Bauplanungs- und Beratungsgmbh / Tel. 01/512 91 62 / office@au-hof.at

GEQ von Zehentmayer Software GmbH www.geq.at v2014,030305 REPOPT1 o11 - Wien Projektnr. 2849

09.05.2014

AU-HOF Consulting Bauplanungs- und Beratungsgmbh / Tel. 01/512 91 62 / office@au-hof.at GEQ von Zehentmayer Software GmbH www.geq.at v2014,030305 REPOPT1 o11 - Wien Projektnr. 2849

www.au-hof.at III Operngasse 6/3/5, 1010 Wien

Gesamtenergieeffizenzfaktor Standortklima EFH Langwiesgasse 12, 1140 Wien - Bestand ... 08052014

Brutto-Grundfläche BGF	206	m²	
Charakteristische Länge Ic	1,36	m	
konditioniertes Brutto-Volumen VB	642	m³	
Energieaufwandszahl e _{AWZ,RH}	1,32		
Energieaufwandszahl eAWZ,TW	1,32		
HHSB _{Def}	16,4	kWh/m²a	
HWB RK	108,1	kWh/m²a	
HWB sk,durchbilanziert	111,9	kWh/m²a	
WWWB Def	12,8	kWh/m²a	
EEB ist	182,9	kWh/m²a	
Temperaturfaktor TF	1,03		TF = HWB _{SK} / HWB _{RK}
HWB 26	66,4	kWh/m²a	HWB ₂₆ = 26 x (1 + 2,0 / Ic) x TF
HEB ₂₆	104,5	kWh/m²a	HEB ₂₆ = HWB ₂₆ x e _{AWZ,RH} + WWWB x e _{AWZ,TW}
EEB 26	120,9	kWh/m²a	EEB ₂₆ = HEB ₂₆ + HHSB ₂₆
f _{GEE}	1,51		f GEE = EEB Ist / EEB 26